

The Agriculture Program The Texas A&M University System

## 2000 Texas Panhandle Forage Sorghum Trial

Brent Bean<sup>1</sup>, Dennis Pietsch<sup>2</sup>, Ted McCollum III<sup>3</sup> Matt Rowland<sup>4</sup>, Jason Banta<sup>4</sup>, Rex VanMeter<sup>4</sup>, Jonny Simmons<sup>4</sup>

## **Introduction and Objective**

Forage sorghum is used throughout Texas for grazing, hay, or as silage. In addition, many dual purpose sorghums are grown that can be utilized for forage or for grain. The purpose of this study was to compare various types of sorghums for there ability to produce silage and to compare their nutritional constituents. In addition, grain yield of each entry was examined. The study included male sterile, photoperiod sensitive, brown mid-rib, and a few sudan type entries. Grain yield was compared to several standard grain sorghum hybrids. Sorghum silage yields were compared to NC+ 7117 corn hybrid grown in the same field.

### **Materials and Methods**

| Trial Location:     | Bush Farm. Located one mile north of Bushland, TX.                            |  |  |  |  |  |  |  |
|---------------------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Cooperator:         | Texas Agricultural Experiment Station                                         |  |  |  |  |  |  |  |
| Previous Crop:      | Fallow                                                                        |  |  |  |  |  |  |  |
| Previous Herbicide: | None                                                                          |  |  |  |  |  |  |  |
| Soil Type:          | Pullman Clay Loam, $pH = 7.4$                                                 |  |  |  |  |  |  |  |
| Plot Size:          | 4 - 30 inch rows by 25 feet long                                              |  |  |  |  |  |  |  |
| Replications:       | 3                                                                             |  |  |  |  |  |  |  |
| Study Design:       | Randomized Complete Block                                                     |  |  |  |  |  |  |  |
| Planting Date:      | May 24, 2000                                                                  |  |  |  |  |  |  |  |
| Planting Rate:      | 120,000 plants/acre                                                           |  |  |  |  |  |  |  |
| Planting Depth:     | 1.5 inches                                                                    |  |  |  |  |  |  |  |
| Seed Method:        | Bedded                                                                        |  |  |  |  |  |  |  |
| Soil Moisture:      | Good; study was pre-irrigated Field                                           |  |  |  |  |  |  |  |
| Maintenance:        | Study site was bedded and fertilized with 180 lbs actual N / acre on March 9, |  |  |  |  |  |  |  |
|                     | 2000. Pre-irrigation took place on May 15, 2000.                              |  |  |  |  |  |  |  |
| Herbicides:         | Bicep II Magnum was applied preemergence immediately following planting.      |  |  |  |  |  |  |  |
| Rainfall:           | May: 0.51 inches                                                              |  |  |  |  |  |  |  |
|                     | June: 4.21 inches                                                             |  |  |  |  |  |  |  |
|                     | July: 1.04 inches                                                             |  |  |  |  |  |  |  |
|                     | Aug: 0.0 inches                                                               |  |  |  |  |  |  |  |
|                     | Sept: 0.01 inches                                                             |  |  |  |  |  |  |  |
|                     | Oct: 2.34 inches                                                              |  |  |  |  |  |  |  |

<sup>&</sup>lt;sup>1</sup> Professor and Extension Agronomist at the Texas A&M Research and Extension Center, Phone: (806)359-5401, E-mail: <u>b-bean@tamu.edu</u>.

<sup>2</sup> Research Associate, Crop Testing Program, Texas A&M University, Phone: (979)845-8505, E-mail: croptest@tamu.edu.

 <sup>&</sup>lt;sup>3</sup> Professor and Extension Beef Cattle Specialist, Texas A&M Research and Extension Center, Phone: (806)359-5401, E-mail: <u>ft-mccollum@tamu.edu.</u>
 <sup>4</sup> Extension Assistant and Research Technicians, Texas Agricultural Extension Service and Texas Agricultural Experiment Station.

| Irrigation: | Pre-water: | 4.5 inches  |  |  |
|-------------|------------|-------------|--|--|
|             | June 21:   | 3.11 inches |  |  |

| July 12: | 2.47 inches |
|----------|-------------|
| July 26: | 3.29 inches |
| Aug 10:  | 2.79 inches |
| Aug 21:  | 3.40 inches |

Data Collected:

-Height at the time entries were harvested for silage in feet.

-Lodging as a percentage of fallen plants per plot on September 11.

-Forage Yield was collected from 1 meter of row in each plot. These yields were converted to yield in tons/ac at 65% moisture. Yields were collected on August 30, September 6, or September 27 when each entry was at the soft-dough stage. Photoperiod sensitive entries were harvested on September 27.

-Grain Yield was collected at maturity from 10 feet of row in each plot. Samples were thrashed and converted to a yield of lbs/ac at 14% moisture.

#### **Results and Discussion**

The 2000 growing season was hotter and drier than normal. Considerably more irrigation water was applied to the trial than a similar trial conducted in 1999. Lodging was somewhat high in many of the plots (Table 1). This was likely due to high wind speeds that accompanied the hot, dry weather experienced in August and early September. There was a considerable amount of variation in the lodging of the brown mid-rib entries. Several of the brown mid-rib entries received lodging ratings of less than 15%. The tall photoperiod sensitive entries all had good standibility with the exception of BMR 301. This entry did appear to be earlier in maturity than the other photoperiod sensitive entries and did produce some grain.

Grain yield was collected from all entries that produced grain. This included the sorghum-sudangrass entries as well as those forage sorghums that were male-sterile but produced grain after being pollinated from neighboring entries. Grain yield of the traditional grain sorghum hybrids, F-647E, A571, P8505, P84G62, NC+ Y363 averaged 6,556 lbs/ac. The yield range on the other entries excluding the photoperiod sensitive, sorghum-sudan, and male sterile entries was 864 to 6,393 lbs/ac. The NC+ 7117 corn grain yield was 9,352 lbs/ac.

Silage yield ranged from 18.02 to 33.70 tons/ac excluding the traditional sorghum hybrids. The NC+ 7117 corn silage yield was 23.66 tons/ac.

#### **Nutrient Analysis**

| v                |                                                                                  |
|------------------|----------------------------------------------------------------------------------|
| Forage Analysis: | Forage was chopped at harvest and subsampled. Subsamples were immediately        |
|                  | frozen. Samples were analyzed by the Dairy One Laboratory, Ithaca, New York. A,, |
|                  | nutritional constituents were adjusted to a 100% moisture free basis.            |
|                  |                                                                                  |

#### Definitions:

| Maturity:          | PS, pho          | toperiod sensitive; E, early; M, mid; L, late.                                 |  |  |  |  |
|--------------------|------------------|--------------------------------------------------------------------------------|--|--|--|--|
| Brown Mid          | ib: N, no; Y     | N, no; Y, yes; refers to phenotype associated with genotype with potential for |  |  |  |  |
|                    | lower li         | gnin content and higher digestibility.                                         |  |  |  |  |
| Male Sterile       | : N, no; `       | Y, yes.                                                                        |  |  |  |  |
| Rank:              | Relativ          | e ranking of variety based on nutritional constituents; 1= highest.            |  |  |  |  |
| <b>Crude Prote</b> | in= 6.25* %      | 6 total nitrogen.                                                              |  |  |  |  |
| NDF:               | % neutral deter  | gent fiber; cell wall fraction of the forage.                                  |  |  |  |  |
| ADF:               | % acid deterge   | d detergent fiber; constituent of the cell wall includes cellulose and lignin; |  |  |  |  |
|                    | inversely relate | ed to energy availability.                                                     |  |  |  |  |

| Lignin:  | constituent of ADF; considered indigestible and is negatively related to energy  |
|----------|----------------------------------------------------------------------------------|
|          | content of forage.                                                               |
| IVTD:    | % in vitro digestibility; positively related to energy availability.             |
| IVTD/ac= | % IVTD * forage yield (lbs. DM/ac).                                              |
| P=       | % phosphorus.                                                                    |
| P/ac=    | % P * forage yield (lbs. DM/ac); reported because of interest in crops that will |
|          | remove P from soils fertilizes with livestock manure.                            |

See Table 2 for nutrient analysis results.

|                 | <b>^</b>            |          | Drown  | Mala    | Moturo       | O<br>N l odrod | % Diant   | Silogo                | Croin Viold            |
|-----------------|---------------------|----------|--------|---------|--------------|----------------|-----------|-----------------------|------------------------|
|                 |                     |          | Brown  | wale    | Wature       | % Lodged       |           |                       |                        |
| Variety         | Company             | Maturity | Midrib | Sterile | Height (Ft.) | 9/11/00        | Moisture" | (Ton/Ac) <sup>2</sup> | (lbs/Ac) <sup>37</sup> |
| Maxi Gain       | Coffey Forage Seeds | PS       | N      | N/A     | 9.5          | 0              | 67        | 28.99 a-f             | -                      |
| GW 9110 F       | Crosbyton Seed      | ML       | N      | N       | 7.1          | 50             | 63        | 22.99 e-l             | 2980 l-q               |
| Silo N Feed     | Crosbyton Seed      | ML       | N      | N       | 6.8          | 83             | 62        | 32.38 ab              | 2539 n-s               |
| GW 8228 BMR     | Crosbyton Seed      | М        | Y      | N       | 7.3          | 20             | 61        | 25.39 b-l             | 3297 ј-р               |
| GW 9430 F       | Crosbyton Seed      | ME       | N      | Y       | 6.5          | 0              | 68        | 21.11 f-m             | 4123 f-l               |
| BMR 100         | Garrison & Townsend | ML       | Y      | N       | 7.3          | 82             | 72        | 20.52 g-m             | 2666 n-s               |
| BMR 101         | Garrison & Townsend | ML       | Y      | Ν       | 8.3          | 80             | 68        | 27.27 a-i             | 2943 l-q               |
| Sile-All W      | Garrison & Townsend | ML       | Ν      | Ν       | 7            | 93             | 52        | 25.13 b-l             | 4105 g-l               |
| Bale-All III    | Garrison & Townsend | Μ        | Ν      | Y       | 7.5          | 43             | 67        | 23.64 d-l             | 2224 o-t               |
| Silo-Milo       | Garrison & Townsend | Μ        | Ν      | N       | 5.6          | 3              | 60        | 23.76 c-l             | 5259 c-g               |
| BMR 301         | Garrison & Townsend | PS       | Y      | N/A     | 9.3          | 45             | 69        | 25.15 b-l             | 586 uv                 |
| RO325-X         | Garst Seed          | ML       | Ν      | N       | 5.8          | 0              | 57        | 28.86 a-f             | 5491 b-f               |
| Hi-Energy II    | Garst Seed          | L        | Ν      | N       | 7.3          | 78             | 59        | 21.10 f-m             | 2973 l-q               |
| NO348 BMR-X     | Garst Seed          | L        | Y      | N       | 8.3          | 13             | 68        | 23.29 d-l             | 1314 s-v               |
| 333             | Garst Seed          | ML       | Ν      | N       | 6.5          | 92             | 57        | 33.70 a               | 3067 l-q               |
| Si-Gro H-45     | Golden Harvest      | Μ        | Ν      | N       | 5.8          | 48             | 49        | 26.23 a-j             | 4786 d-h               |
| Si-Gro EX47(X)  | Golden Harvest      | М        | Y      | N       | 6.7          | 15             | 66        | 20.74 g-m             | 2812 l-r               |
| Silamax BMR     | Kelley Green Seeds  | Μ        | Y      | N       | 8            | 10             | 68        | 20.63 g-m             | 1047 tuv               |
| Silamaster      | Kelley Green Seeds  | М        | Ν      | N       | 8            | 90             | 63        | 21.65 e-l             | 2989 l-q               |
| 2-Way F-190 BMR | Kelly Green Seeds   | М        | Y      | N       | 6.8          | 12             | 62        | 22.60 e-l             | 2631 n-s               |
| FS5             | Monsanto            | М        | N      | N       | 7.6          | 3              | 69        | 23.42 d-l             | 3319 i-p               |
| FS25E           | Monsanto            | ML       | N      | N       | 7.8          | 18             | 66        | 31.70 abc             | 3031 l-q               |
| 4 Ever Green    | Walter Moss Seed    | PS       | N      | N/A     | 9.5          | 0              | 75        | 23.08 e-l             | -                      |
| Millennium BMR  | Walter Moss Seed    | М        | Y      | N       | 8            | 10             | 70        | 24.23 c-l             | 572 uv                 |
| Nutri-Choice    | NC+ Hybrids         | E        | N      | N       | 6.3          | 0              | 58        | 25.85 a-k             | 6393 bc                |
| Nutri-Choice II | NC+ Hybrids         | ML       | N      | N       | 5.5          | 93             | 58        | 26.72 a-i             | 4077 g-m               |
| Nutri-Cane II   | NC+ Hybrids         | ME       | N      | Y       | 6.5          | 7              | 65        | 25.21 b-l             | 4469 e-k               |
| NC+ 305F        | NC+ Hybrids         | ME       | N      | Y       | 7.5          | 0              | 66        | 20.85 g-m             | 4057 g-m               |
| Nutri-Ton       | NC+ Hybrids         | ML       | N      | Y       | 7.5          | 60             | 56        | 27.94 a-h             | 4574 e-j               |
| NC+ 8R18        | NC+ Hybrids         | ML       | N      | N       | 4.7          | 0              | 64        | 20.89 g-m             | 5756 b-e               |
| Hikane II       | Novartis Seeds      | М        | N      | N       | 7.5          | 25             | 68        | 26.74 a-i             | 3390 i-o               |
| KF429           | Novartis Seeds      | ML       | N      | N       | 8.3          | 68             | 60        | 26.02 a-j             | 4617 d-j               |
| NK300           | Novartis Seeds      | М        | N      | N       | 5.7          | 90             | 64        | 23.61 d-l             | 4678 d-i               |
| SS405           | Novartis Seeds      | ML       | N      | N       | 10           | 17             | 66        | 28.16 a-g             | 1475 r-v               |
|                 |                     |          | Brown  | Male    | Mature       | % Lodged       | % Plant   | Silage                | Grain Yield            |

# Table 1. Comparison of Sorghums for Standibility, Silage Production and Grain Yield

| Variety           | Company             | Maturity | Midrib | Sterile | Height (Ft.) | 9/11/00 | Moisture <sup>1)</sup> | (Ton/Ac) <sup>2)</sup> | (lbs/Ac) <sup>3)</sup> |
|-------------------|---------------------|----------|--------|---------|--------------|---------|------------------------|------------------------|------------------------|
| SS506             | Novartis Seeds      | ML       | N      | N       | 10.7         | 8       | 66                     | 22.64 e-l              | 864 tuv                |
| 1990              | Novartis Seeds      | ML/PS    | N      | N/A     | 9.7          | 0       | 74                     | 22.91 e-l              | -                      |
| 811F              | Pioneer Hi-Bred     | PS       | N      | N       | 8.5          | 3       | 75                     | 22.72 e-l              | -                      |
| 979               | Pioneer Hi-Bred     | ML       | N      | Y       | 7.2          | 3       | 63                     | 23.09 e-l              | 127 v                  |
| Silo Buster       | Production Plus     | ML       | N      | N       | 8.3          | 77      | 62                     | 22.03 e-l              | 2525 n-s               |
| Silo +            | Production Plus     | ML       | Y      | N       | 6.8          | 13      | 57                     | 22.36 e-l              | 2535 n-s               |
| Red Top +         | Production Plus     | ML       | Y      | Y       | 6.5          | 0       | 71                     | 21.39 e-m              | 3124 k-q               |
| Dairy Master BMR  | Richardson Seeds    | ML       | Y      | Ν       | 7.8          | 13      | 70                     | 18.36 j-m              | 1118 tuv               |
| Pacesetter        | Richardson Seeds    | PS       | Ν      | Ν       | 10           | 0       | 75                     | 19.35 i-m              | -                      |
| Silo Master D     | Richardson Seeds    | ML       | Ν      | N       | 7.5          | 80      | 59                     | 31.24 a-d              | 3357 i-o               |
| Silo 600D         | Richardson Seeds    | ML       | Ν      | Ν       | 5.5          | 0       | 60                     | 23.23 e-l              | 5479 b-f               |
| X 32736           | Richardson Seeds    | ML       | Y      | Ν       | 6.9          | 15      | 66                     | 28.16 a-g              | 1773 q-u               |
| X 32735           | Richardson Seeds    | ML       | Y      | N       | 6.8          | 23      | 68                     | 20.39 g-m              | 2050 o-t               |
| Canex             | Sharp Brothers Seed | ME       | Ν      | Y       | 7            | 0       | 65                     | 22.04 e-l              | 3707 h-n               |
| Canex II          | Sharp Brothers Seed | ME       | Ν      | Y       | 7            | 0       | 66                     | 24.07 c-l              | 2731 m-r               |
| Canex BMR 208     | Sharp Brothers Seed | ME       | Y      | N       | 6.7          | 7       | 62                     | 23.31 d-l              | 4046 g-m               |
| Buffalo Brand     | Sharp Brothers Seed | М        | Ν      | Ν       | 7.7          | 10      | 57                     | 18.02 klm              | 174 v                  |
| Grazex II         | Sharp Brothers Seed | E        | N      | N       | 7.5          | 0       | 60                     | 24.65 b-l              | 307 v                  |
| Grazex II W       | Sharp Brothers Seed | ME       | Ν      | Ν       | 7.6          | 5       | 56                     | 18.30 j-m              | 168 v                  |
| Grazex BMR 737    | Sharp Brothers Seed | ME       | Y      | Ν       | 7.6          | 10      | 62                     | 20.04 h-m              | 414 uv                 |
| Grazex BMR 727X   | Sharp Brothers Seed | ME       | Y      | N       | 7.2          | 23      | 63                     | 22.48 e-l              | 566 uv                 |
| Grazex BMR 116X   | Sharp Brothers Seed | ME       | Y      | Y       | 7.7          | 0       | 63                     | 23.02 e-l              | 896 tuv                |
| 101F              | Seed Inc.           | ML       | Ν      | Ν       | 8.5          | 90      | 60                     | 23.96 c-l              | 1977 p-t               |
| 101FS             | Seed Inc.           | ML       | N      | Y       | 7            | 7       | 67                     | 21.19 e-m              | 3611 h-n               |
| 2-Way SRS         | Warner Seed         | М        | N      | N       | 7.7          | 85      | 58                     | 21.62 e-l              | 2562 n-s               |
| 2-Way F-145       | Warner Seed         | ML       | Ν      | Ν       | 7.2          | 85      | 57                     | 29.11 a-e              | 2926 l-q               |
| F-647E (Grain)    | Frontier            | ML       | Ν      | Ν       | 4.3          | 0       | 36                     | 20.58 g-m              | 5822 b-e               |
| A571 (Grain)      | Monsanto            | М        | Ν      | Ν       | 4.5          | 0       | 58                     | 20.43 g-m              | 7813 a                 |
| P8505 (Grain)     | Pioneer HiBred      | М        | Ν      | Ν       | 3.8          | 0       | 57                     | 13.52 m                | 6740 ab                |
| P84G62 (Grain)    | Pioneer HiBred      | ML       | N      | N       | 4.3          | 0       | 61                     | 18.00 klm              | 5984 bcd               |
| NC+ Y 363 (Grain) | NC+ Hybrids         | ME       | N      | N       | 4            | 0       | 49                     | 17.84 lm               | 6424 bc                |

Percent whole plant moisture when plots were harvested for silage yield.
 Silage yield were corrected to 65% moisture. Means followed by the same letter do not significantly differ at P=0.05, LSD.
 Grain yield were corrected to 14% moisture.