Panhandle Pest Update
Texas AgriLife Extension Service

June 8, 2010 Issue 2

Corn Insects

It is going to be interesting to see what happens this growing season with spider mites, rootworm and lepidopteran pests. With the harsh winter conditions coupled with a cool wet spring (that lowered heat unit accumulation) we might expect poor survival and delayed emergence of our rootworm and lepidopteran pests. To date there has not been any Southwestern Corn Borer moths caught from traps that Dr. Jerry Michels, Texas AgriLife Research Entomologist - Amarillo, is monitoring weekly from locations from Dimmitt to Dumas and Dalhart. There has only been just 1 Western Bean Cutworm moth caught in one trap near Dimmitt on May 20th.

Also, Dr. Michels has developed a model to estimate and predict the percentage emergence of Adult Western Corn Rootworm for locations from Lamesa to the Northern Panhandle. The current reported prediction from Dr. Michels are shown on page 4. Dr. Michels is sending his report weekly by e-mail to individuals. If you are interested in receiving this report you can contact Dr. Michels at jmichels@tamu.edu. This report will also be posted on-line weekly at http://Amarillo.tamu.edu/programs/agrilife_programs/entomology_extension/index.php.

However, Dr. Pat Porter, Extension Entomologist, was called last Friday to look at a non-bt corn field near New Deal with heavy feeding damage from fall armyworm. He found that 97% of smaller plants were infested with up to 6 FAW larvae and larger plants were 40% infested. This one field does not mean we will have a bad fall armyworm year. If you do encounter high FAW numbers please call me, Dr. Porter, your IPM extension agent, or county extension agent.

Special points of interest:
- Heavy FAW damaging corn in a field near New Deal
- Spider mites to date are light
- Cotton needs to scouted for Thrips
- Insecticide Update

Ed Bynum, PhD
Extension Entomologist
6500 Amarillo Blvd. W.
Amarillo, TX 79106
806-677-5600 ext. 612
ebynum@ag.tamu.edu

Photo: Dr. Pat Porter
The winter and spring conditions may mean there are low numbers of spider mites coming out of wheat. But the recent hot, dry conditions, unfortunately, favor rapid reproduction of spider mites and we could see populations increase quickly. An early infestation of spider mites have been reported in a field in Castro county, but over all the mite situation is light.

We are seeing large numbers of thrips migrating from wheat into corn. These same thrips that are a severe pest of seedling cotton will eat spider mites and may help keep mite infestations low in corn. Fairly high to high thrips populations have been reported south of Amarillo where wheat fields are drying down rapidly. Mite infestations could be sporadic this year, so each field needs to be scouted for mites and predator.

Cotton Insects

As mentioned earlier, thrips populations have been noted in counties south of Amarillo. We can also expect similar populations as wheat matures in the panhandle. The hot summer like temperatures should help cotton outgrow damage from thrips. But, high populations of these slender, straw colored insects can overwhelm seedling cotton quickly. Research has shown that once plant damage is visible control is too late. With our daily maximum temperatures being above 85°F the current action threshold of 1 thrips per true leaf should be used to base control decisions.

If you used a seed treatment for thrips, that protection will last from 18-21 days from planting. A treatment of Temik can last up 35 days. If you begin seeing immature thrips the protection of your seed or Temik treatments are breaking down. You will need to a magnifying glass to help see the wingless immature thrips. Use a pencil lead to look for the thrips under curled up or cupped terminal leaves.

If you did not use a seed treatment or put down Temik, foliar applications may be needed as soon as the cotton emerges. A foliar application will provide control for about 5 days.
Wheat

Wheat is drying down quickly harvest will begin shortly. A lot of fields last month were showing symptoms that looked like barley yellow dwarf virus and/or on of the wheat streak mosaic viruses. I checked with Dr. Ron French, Extension Plant Pathologist, and Mr. Jacob Price, Texas AgriLife Research, to find out which diseases were testing positive from wheat samples turned in to the plant diagnostic lab at the Texas AgriLife Research and Extension Center at Amarillo. Out of 150 samples the most prominent disease was WSMV at 25%. Only 8% tested positive for BYDV and 7% for Triticum Mosaic Virus. Based on what fields looked like it is interesting that more fields did not test positive for BYDV.

Insecticide Update

EPA cancels Methyl Parathion

All uses of Methyl Parathion have been cancelled. Here is the text from the EPA notification. “EPA has received requests from the registrants to voluntarily cancel all product registrations containing methyl parathion, a restricted use organophosphate insecticide and acaricide used primarily on cotton, corn, and rice, as well as on other agricultural crops. These requests would terminate the last methyl parathion products registered for use in the U.S., effective December 31, 2012. End-use products will not be sold after August 31, 2013, and end-use products cannot legally be used after December 31, 2013. All end use product labels will be amended to reflect the last legal use date.”

Bayer CropScience to cancel Sevin

Bayer CropScience is canceling several formulations of the insecticide, Sevin. These include 80s, XLR Plus and 4F formulations.

As report by Dr. Pat Porter from FOCUS on South Plains Agriculture, vol. 49, no. 6, May 28, 2010 at http://lubbock.tamu.edu/focus/.
2010 Western Corn Borer Percentage Emergence of Adults Model
Texas AgriLife Research, Bushland, TX
Compiled by Dr. Jerry Michels, and Ms. Patty Garrett

Valid for

<table>
<thead>
<tr>
<th>Location</th>
<th>% Emergence</th>
<th>Total DD</th>
<th>Longitude</th>
<th>Latitude</th>
<th>DD to 1%</th>
<th>DD to 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perryton</td>
<td>0.00</td>
<td>868</td>
<td>100.81</td>
<td>36.39</td>
<td>243</td>
<td>725</td>
</tr>
<tr>
<td>Morse</td>
<td>0.00</td>
<td>781</td>
<td>101.48</td>
<td>36.06</td>
<td>331</td>
<td>813</td>
</tr>
<tr>
<td>Dalhart</td>
<td>0.00</td>
<td>707</td>
<td>102.50</td>
<td>36.06</td>
<td>404</td>
<td>886</td>
</tr>
<tr>
<td>Etter</td>
<td>0.00</td>
<td>795</td>
<td>101.99</td>
<td>36.03</td>
<td>316</td>
<td>798</td>
</tr>
<tr>
<td>White Deer</td>
<td>0.00</td>
<td>828</td>
<td>101.17</td>
<td>35.44</td>
<td>283</td>
<td>765</td>
</tr>
<tr>
<td>Bushland (JBF)</td>
<td>0.00</td>
<td>832</td>
<td>102.09</td>
<td>35.19</td>
<td>279</td>
<td>761</td>
</tr>
<tr>
<td>Bushland (ARS)</td>
<td>0.00</td>
<td>766</td>
<td>102.09</td>
<td>35.19</td>
<td>345</td>
<td>827</td>
</tr>
<tr>
<td>W.T. Feedlot</td>
<td>0.00</td>
<td>849</td>
<td>102.00</td>
<td>35.00</td>
<td>262</td>
<td>744</td>
</tr>
<tr>
<td>Wellington</td>
<td>2.85</td>
<td>1178</td>
<td>100.21</td>
<td>34.85</td>
<td>-67</td>
<td>416</td>
</tr>
<tr>
<td>Dimmitt</td>
<td>0.00</td>
<td>821</td>
<td>102.31</td>
<td>34.55</td>
<td>291</td>
<td>773</td>
</tr>
<tr>
<td>Farwell</td>
<td>0.00</td>
<td>825</td>
<td>103.04</td>
<td>34.38</td>
<td>286</td>
<td>768</td>
</tr>
<tr>
<td>Halfway</td>
<td>0.01</td>
<td>928</td>
<td>101.57</td>
<td>34.11</td>
<td>183</td>
<td>665</td>
</tr>
<tr>
<td>Lockney</td>
<td>0.03</td>
<td>977</td>
<td>101.44</td>
<td>34.12</td>
<td>134</td>
<td>616</td>
</tr>
<tr>
<td>Lubbock</td>
<td>2.27</td>
<td>1162</td>
<td>101.88</td>
<td>33.56</td>
<td>-51</td>
<td>431</td>
</tr>
<tr>
<td>Lamesa</td>
<td>10.48</td>
<td>1292</td>
<td>101.95</td>
<td>32.74</td>
<td>-181</td>
<td>301</td>
</tr>
</tbody>
</table>

1111 Total DD = 1% emergence
1593 Total DD = 50% emergence

Western Corn Rootworm Accumulated Degree Days 2010