Wheat Pests

There have been reports of armyworms developing and feeding in wheat. Young larvae are pale green with very light longitudinal stripes. Older larvae are greenish to brownish with the stripes on the sides and back being more visible. Larvae will become 1 1/2 inches long when fully grown and they crawl in a looping motion. These larvae hide at the base of the plants during the day and then move up onto the plants to feed late in the evening and at night or during cloudy overcast days. Larvae feed on leaves, kernels and will chew on the stem at the base of the head cause head clipping.

Control measures are suggested when there are 4 to 5 larvae per square foot in combination with extensive feeding to lower leaves. But, watch closely for evidence of head clipping.

A list of products can be found in the Texas AgriLife Extension Service publication E-399, Managing Insect and Mite Pests of Texas Small Grains (http://agrilifebookstore.org/publications_details.cfm?whichpublication=31). The suggested products listed in the guide include Sevin, Baythroid 2, Proaxis, Warrior, Lannate, Methyl parathion, Penncap-M, Tracer, and Mustang Max. Since armyworms are active in the evening and at night, applying insecticides late afternoon or in the evening may improve control.

Decisions to treat will depend on the maturity of the wheat, the extent of damage, and the number of days to harvest. The pre-harvest interval for some of the labeled products can be as short as 7 days (Lannate) to as long as 30 days (Baythroid 2, Proaxis, Warrior). This will limit which products can be used if infestations and damage warrant treatment.

Russian Wheat Aphids

Now that the wheat is drying down we are seeing swarms of alate (winged forms) Russian Wheat Aphids (RWA) in areas where the aphids were heavy this season. These aphids are moving out of the wheat and settling on any available plant. Some individuals are finding these aphids in fairly high numbers in seedling sorghum. When the RWA was first reported in 1986 researchers learned that the aphid would feed on sorghum but was unable to reproduce well or develop successive generations. Unless there has been a change in the biology of the RWA, the aphids should not cause damage to the sorghum.
Cotton

Thrips, Thrips, and more Thrips. Again where wheat is drying, thrips are become very abundant. Late yesterday afternoon when the wind was calm, there was a cloud of flying thrips in a cotton field near Dimmitt. Thrips were causing significant damage to the non-treated cotton at this test site. Densities were ranging from 2 to 3 adults and 15 to 45 immatures per plant in the untreated plots. In another test field near Sunray, thrips numbers were not as heavy but still averaged 1 per plant which was at the action threshold for cotyledon cotton. Both test fields were planted the first week of May and cotton growth has been very slow.

The seed treatments were breaking down with thrips beginning to colonize on plants. Immature thrips were being found in these treatments. Plants in the at-planting Temik treatments were looking good, but protection may not last much longer.

Scouting fields every few days (twice a week) will help determine if and when to apply foliar insecticides. Closely inspect the plant terminals and in the folds of the leaves for thrips. The decision to treat should be based on the stage of the cotton and the number of thrips per plant at each stage.

Corn

There have been reports of spider mites causing problems in fields. Fields have already been treated to suppress the developing mite infestations. Miticide selection this early in the season is very important. Some of the miticides are restricted to just one application and/or a maximum amount that can be applied per season. If hot dry weather conditions continue we, also, may have to contend with spider mite infestations later in the season.

A consultant noted seeing Southwestern and European corn borer moths. These moths are emerging from the larvae which overwintered. They are laying eggs in whorl stage corn that will become the first generation corn borers for this season. The first generation seldom reach economic infestation levels requiring an insecticide application. Corn hybrids contain the bt-toxins for stalk boring lepidoptera will be protected and should have little to no damage. A list of these Bt-corn hybrids are available at the http://lubbock.tamu.edu/focus/focus2009/May_22/pdf/Corn_Transgenics.pdf.