GRILIFE EXTENSION

Wheat Disease Management and Diagnostics

Ronald "Ron" French, Ph.D. Assistant Professor & Extension Specialist-Plant Pathology Texas A&M AgriLife Extension Service-Texas A&M System Amarillo, TX

Contact information

- Website: http://amarillo.tamu.edu/
- http://amarillo.tamu.edu/programs/agrilife_programs/plan t_pathology_extension/index.php
- Shortcut: http://sickcrops.tamu.edu/
- rdfrench@ag.tamu.edu
- 806-677-5600

http	://sickcrops	s.tamu.edu
Texas AgriLife Researce & Extension Center		ILLO
Plant Pathology	Extension	
Dr. Ronald Fren	ch	
	Welcome to SI	CK CROPS
	Citrus Corn Potato Sorghum Bean/Soybean Vegetables Wheat Other Crops Homeowner/Gardeners	Contact Information Wheat Disease Fact Sheets Plant Diagnostic Form Texas Plant Diagnostic Clinic (THPPDL)

Wheat? (Feb)

Estimated Yield Loss to Stem Rust

Stagonospora nodorum (blotch)

More active in the mid 50s F to low 70s F. Fungus can survive at freezing temperatures.

F	ungi	cide A	pplicati	on
Product	Company	Rate/Acre	Diseases Controlled	Application Timing
Headline (pyraclostrobin)	BASF	6-9 fl.oz./A	Leaf rust, Stripe rust, Powdery mildew	Apply after flag leaf emergence, no later than flowering (Feekes 10.5)
PropiMax EC (propiconazole)	Dow AgroSciences	4 fl.oz./A	Leaf rust, Stripe rust, Powdery mildew	Highest yields usually when applied to emerging flag leaf (no later than Feekes 8)
Quilt (azoxystrobin + propiconazole)	Syngenta	14 fl.oz./A	Leaf rust, Stripe rust, Powdery mildew	Applied until full head emergence (Feekes 10.5)
Quadris (azoxystrobin)	Syngenta	4-12 fl.oz./A	Leaf rust, Stripe rust, Powdery mildew	Applied from jointing (Feekes 6) up to late head emergence (Feekes 10.5)
Stratego (trifloxystrobin + propiconazole)	Bayer CropScience	10 fl.oz./A	Leaf rust, Stripe rust, Powdery mildew	Applied until full head emergence (Feekes 10.5).
Tilt (propiconazole)	Syngenta	4 fl. oz./A	Leaf rust, Stripe rust, Powdery mildew	Applied until full head emergence (Feekes 10.5)

Start of Epidemic (Epiphytotic)	Percer		Crop based o tibility	on Host
	S(2)	MS(4)	MR(6)	R (8)
First Node (Z31; F6)	85	75	55	25
Flag leaf (Z39; F9)	75	45	15	5
Mid-boot (Z45; F10)	65	25	7	2
First awns visible; First Spikelet of Inflorescence Barely Visible (Z49; between F10-10.1)	50	10	3	1
Mid-heading, half of nflorescence emerged (Z55; F10.3)	40	5	2	0
Mid-flowering; Anthesis half way (Z65; 10.52)	12	2	1	0

RUST THRESHOLD: Disease Management for Leaf Rust

Approximate percent loss of yield caused by leaf rust at combinations of leaf rust severity and growth stage of wheat.

	Sever	rity (%)	of leaf r	ust on th	ne flag leaf
	10	25	40	65	100
Growth stage			Yield Lo	oss (%)	
FLOWERING	10	15	20	30	35
Milk				14	20
Soft dough					10
Hard dough					

TEXAS: Stripe Rust Threshold Study to determine potential economic thresholds -2008)

- TAM 111: Leaf rust (S), Stripe Rust (R)
- TAM 112: Leaf Rust (S), Stripe Rust (S)
- TAM 304: Leaf Rust (R), Stripe Rust (mod. S)
- Fannin: Leaf Rust (R), Stripe Rust (R)

S=Susceptible, R=resistant

Sprayed ~ Feekes 10.5 (Fully headed) for all treatments Split application of Quilt- Feekes 10.5 & 10.51 (mid flowering) NO RUST AT TIME OF SPRAY

Seedborne (Seedling)

Diseases

Seedborne/Seedling Diseases

- Most seedborne diseases are fungal.
- Most seed treatment ingredients are fungicides.
- Manage seedborne smuts and bunts.
- Improve stand establishment.
- Potential for Increased tillering with better root health.
- Root rot suppression
- Manage fall season foliar diseases.

Stinking Smut (Common bunt)

Fusarium seed scab (Fusarium graminearum/Giberella zeae)

Comn			ent fungio vinter who	cides labeled for eat
Trade Name Company	Common Chemical name	% Active Ingredient	Rate	Additional label Information
Dividend XL RTA Syngenta	difenoconazole mefenoxam	3.21% 0.27%	2.5 fl oz per 100lb of seed OR 5.0 fl oz per 100lb of seed OR 10.0 fl oz per 100lb of seed	Disease control: The 1.0 fl oz rate of D Dividend XL RTA are for control of com Dividend XL RTA and the 2.0 fl oz rate common bunt, dwarf bunt, flag smut, se rots, <i>Fusarium</i> seed scab and <i>Pythium</i> common root rot and <i>Rhizoctonia</i> root n
Dividend Extreme Syngenta	difenoconazole mefenoxam	7.73% 1.87%	1.0 fl oz per 100lb of seed OR 2.0 fl oz per 100lb of seed OR 4.0 fl oz per 100lb of seed	The 10.0 fl oz rate of Dividend XL RTA for control of common blunt, dwarf bunt, general seed for GS, <i>Fusarium</i> seed scab season control of common root rot, <i>Fus</i> and <i>Rhizoctaria</i> root rot as well as fail is <i>Septoria</i> leaf blotch. Green wheat forage may not be grazed Apply Dividend Extreme as water-bases seed treatment equipment. Dividend XL
Cruiser 5F S Syngenta	thiamethoxam	47.6%	1.0 fl oz. / 100 lb. of seed	treatment, using standard mechanical s Insect control: Early season protection (including Bird cherry-oat, English grain Wireworms and Hessian fly. While the grub control in wheat, limited field tests effective.

Conclusions

- Fungi are present in soil, seed, roots, foliar tissue, and heads.
- Fungal pathogens will vary with location, so management practices, including fungicide seed treatments, need to be adjusted to what is present in a field.
- Further studies (field, in vitro) will attempt to determine which chemistries work better against a certain fungal population or isolates of a specific fungus.

Viruses and Vectors

Most common viruses

- Wheat streak mosaic virus (WSMV)
- Wheat Mosaic Virus-WMoV (aka High plains virus -HPV)
- Triticum mosaic virus (TriMV)-2006
- Barley yellow dwarf virus (BYDV)
- Cereal yellow dwarf virus (CYDV)-Subgroup II

Plants	Mite Increase	WSMV Susceptibility
Oat	None	Resistant
Barley	Poor	Resistant
Proso millet	Good	Susceptible
Rye	Poor	Resistant
Sorghum	Poor-Good	Immune
Corn	Poor-Fair	Susceptible
Jointed goatgrass	Fair-Good	Susceptible
Japanese chess	Fair	Susceptible
Cheat	Fair	Susceptible
Downy chess	Good	Susceptible
Sandbur	Good	Susceptible
Smooth crabgrass	Fair-Good	Susceptible
Crabgrass	None	Susceptible
Barnyard grass	Poor	Susceptible
Yellow foxtail	None-Poor	Immune
Green foxtail	Poor	Susceptible
W. wheatgrass	Fair	Immune
Buffalograss	None	Immune
Side oats grama	Poor	Immune
Smooth brome	Very Poor	Immune
Canada wild-rye	Poor-Fair	Susceptible
Johnsongrass	Poor-Good	Immune

Townsend et al. http://www.ca.uky.edu/entomology/entfacts/ef117.asp

Triticum mosaic virus

- Wheat, others?
- Transmitted by
 Wheat curl mite
- Appearance can be confused with WSMV
- Unknown yield potential losses.

J. Price

Wheat mosaic virus (aka High Plains Virus)

- Corn, wheat, barley, oats, and rye
- Transmitted by Wheat curl mite
- Symptoms- mosaic and streaking patterns, bright yellow streaks (wheat)
- Potential severe yield losses

Management of WSMV, TriMV & WMoV(HPV)

Destroy the host for Wheat Curl Mite

Variety selection for WSMV (TAM 112 tolerance)

- will not hold-up to heavy pressure

Cultural practices

- Wheat curl mite can not live without a host
- Remove all volunteer wheat and weeds at least 21 days before planting wheat

THANK YOU !

For more information:

http://sickcrops.tamu.edu