

particulate matter: measurement techniques

brent w. auvermann associate professor and extension agricultural engineer amarillo, tx

outline

- the role of PM measurement in dairy production
 - regulation
 - research
 - self-assessment
- what is PM, and how is it classified?
- what techniques are available to measure PM?
 - direct
 - indirect

- regulation
 - mass concentrations [M L⁻³]
 - federal (National Ambient Air Quality Standards)
 - state and local ambient standards
 - emission rates [M T⁻¹ or M L⁻² T⁻¹]
 - federal CAA permitting
 - Title V "major sources"
 - New Source Review (NSR)
 - Prevention of Significant Deterioration (PSD)
 - legal proceedings
 - nuisance odor
 - visibility impairment and liability

research

- baseline monitoring
 - what are the typical concentrations?
 - how do they vary over time?
 - diurnally
 - seasonally
 - with capacity changes
- determining "emission factors"
 - rate of emissions per unit throughput or production
 - Ibs PM₁₀ per day per 1,000 day capacity
 - Ibs PM_{2.5} per cwt of milk produced

research (cont'd)

- evaluating abatement measures
 - am i achieving my goals?
 - am i creating new problems by solving old ones?
 - am i spending my money wisely?
 - how could i achieve my goals more efficiently?
 - energy
 - currency
 - labor intensiveness
- projecting downwind concentrations
 - what are my neighbors' likely exposures?
 - is there a need to reduce their exposures?

self-assessment

- determining baseline performance
- evaluating management changes
 - environmental management systems (EMS)
 - documenting improvements
- planning future steps
- engaging neighbors and communities
- going beyond what is required to what is possible

what is PM, and how is it classified?

- no such thing as a "10micron particle" per se
- livestock PM tends to be a mixture of many particle types of variable shape and composition
 - fibers (livestock hair, fibrous feedstuffs)
 - slivers and flakes (dander, clay particles)
 - conglomerates
 - sand and silt

"aerodynamic diameter"

Why Classify Particles by Aerodynamic Diameter?

- Main focus is human respiratory health
- The smaller the particle, the easier it is to carry along sharp turns without colliding with the passage walls
- In respiratory systems, the smaller particles penetrate deeper into the lungs where O₂/CO₂ exchange occurs
- PM_{2.5} is more of a health threat than PM₁₀ or PM₅₀

fine particles are important for other reasons, too

what techniques are available to measure PM?

- physical basis
 - direct
 - mass concentration (μg/m³)
 - number concentration (particles/m³)
 - total vs. size-selective aerosols (TSP vs. PM_x)
 - indirect
 - active (transmissometry, nephelometry, aethalometry)
 - passive (target imaging)

what techniques are available to measure PM?

time basis

- time-averaged
 - ambient standards (24-hr, annual)
 - occupational standards (8-hr, 30-min)
 - federal or state "reference methods"
 - obscures short-term phenomena
 - relatively inexpensive to buy, but may be expensive to run
- continuous/instantaneous
 - more information; can be used to compute time averages
 - "equivalent methods"
 - relatively high capital expense, but lower labor requirements

a virtual tour of some methods

Federal Reference Method (TSP)

- No longer used for federal compliance monitoring
- Measures total suspended particulate (~PM₅₀)
- Operates at 40 cfm
- Captures TSP on an 8"x10" fiberglass filter
- Filter processing required
 - Pre-exposure conditioning to RH, temp specs
 - Pre-exposure weighing
 - Post-exposure conditioning
 - Post-exposure weighing

Federal Reference Method (PM₁₀)

- Currently used for compliance monitoring
- Size-selective inlet collects larger particles on oily impactor surface
- Operates at 40 cfm
- Captures PM₁₀ on an 8"x10" fiberglass filter
- Filter processing required
- FRMs also exist for PM_{2.5} compliance monitoring

Tapered-Element Oscillating Microbalance (TEOM)

- Continuous monitor
- May be equipped with size-selective inlets for PM_x

