

An agricultural research partnership of Texas AgriLife Research, WTAMU, Texas AgriLife Extension Service, KSU and USDA-ARS funded by USDA-CSREES (Award # 2005-34466-15703)

Measurements and Control Strategies

FUGITIVE DUST FROM CATTLE FEEDYARDS

Ground

_evel

Area

Sources

Measuring GLAS Emissions **Quasi-Direct** Methods Indirect **Direct** Methods Methods

Direct Methods

- Actually measuring the quantity of interest
- No such animal in the case of GLAS
- Methods that get closest:
 - Eddy accumulation
 - Flux chambers (!)

Indirect Methods

- Measuring something other than the quantity of interest (e. g., concentration)
- Inferring the emission rate from a model relationship
- Sensitive to errors in the measurements and the governing assumptions

$$Q = \frac{C}{AtmosphericDispersion}$$

PM₁₀ Flux: Inverse Dispersion

- AP-42: $280 \times (PM_{10}/TSP) = 70 \text{ lb/1,000 hd-d}$
- S. Parnell et al. (1994): 9.2 lb/1,000 hd-d
- C. B. Parnell et al. (1999): 15 lb/1,000 hd-d
- CARB (2004): 29 lb/1,000 hd-d
- J. Lange et al. (2007):
 - 16±8 lb/1,000 hd-d (ISCST3)
 - 11±5 lb/1,000 hd-d (AERMOD)
- Wanjura et al. (2004): 42 lb/1,000 hd-d
 - Pen surface: 6 (14%)
 - Unpaved roads: 36 (86%)

Summary

- <u>Direct</u> measurement of fugitive emission rates from GLAS is difficult & expensive
- Many <u>indirect</u> methods available; no single method is best for all scenarios
- Model contingency raises red flags
- Multiple <u>independent</u> methods should converge on a narrow range of estimates

PM₁₀ Flux: Other Methods

•

_

•

_

Box Model – The General Idea

Integrated Horizontal Flux

(a special case of the box model)

Both wind speed and mass concentration vary with elevation

Feedyard A 17-20,000 head

Feedyard E 17-24,000 head

Feedyard A - H₂S Emission Rate from Pens Diurnal Emissions Pattern

Modeling Flux: Achilles' Heel

- Under normal circumstances, no single value of PM₁₀ emission flux will reproduce measured concentrations exactly
 - Matching the 24-hr average, C_{meas,24},
 underpredicts C_{peak}
 - Matching C_{peak} overpredicts _{Cmeas,24}
- Even if we must have a 24-hr emission factor, we shouldn't use it for dispersion modeling

Fugitive Dust Control Strategies

- Source control techniques
 - Moisture management
 - Pen surface sprinkling
 - Stocking density manipulation
 - Manure harvesting
 - Surface amendments (mulches, binders, etc.)
- Edge-of-feedyard or downwind control techniques
 - Water curtain
 - Shelterbelts

Moisture Management Target Moisture Content?

Net PM₁₀ Concentrations vs. Pen Surface Moisture Content.

Pen Surface Sprinkling

 Application of water to pen surfaces (solid-set, tanker-mount, "reel rain")

Efficacy

Reduced net PM₁₀
 concentration by 30 to 55%

Readiness for adoption

- Ready for producer implementation
- Need to refine design and management procedures

Stocking Density Effect on Water Balance

Projected Water Use (30k hd) (Pacific Northwest rain shadow)

Sprinkler Water Demand: Summary

- Spreadsheet exercise ONLY
- Assumed ET_{fy}=0.35 ET_o
 - Marek thesis: ET_{fv}, Et_o not well correlated
 - Feedyard evaporation is water-limited, not energy-limited
 - Bottom-line sprinkler demand figure of 1/8"/d is artificially low
- 2x stocking density effect on WB appears minimal

Manure Harvesting

 Frequent removal of the uncompacted surface layer

Efficacy

- Dust emission potential of manure layer decreases with decreasing manure depth
- Manure harvesting can reduce the amount of water needed for dust control
- Yields highest fuel value

Readiness for adoption

- Ready for producer implementation
- Need to refine management procedures
- Law of diminishing returns

Surface Amendments

 Surface application of crop residue or other materials

Efficacy

 Application of wheat straw or sawdust reduced the dust emission potential of a manure surface

Readiness for adoption

Promising but needs to be validated at the field level

Oil-in-Water Emulsions

- Water is the "continuous phase"
- "Oil" at \$2.05/gal, 20% v/v, 0.25" applied

Stocking Density Manipulation

- Cross-fencing (solid or electric)
- Preserve 100% of bunk space
- Efficacy
 - Doubling the effective stocking density reduced net PM₁₀ concentrations at the corral fence line by 20%
 - No conclusive proof of reduced emission <u>rate</u>
 - Anecdotal evidence from producers

Water Curtain

- Open-air wet scrubber
- Efficacy
 - Prototype reduced near-field PM₁₀ concentration 20-40%
 - Used as much water as a solid-set sprinkler system (1 gpm/ft)
- Readiness for adoption
 - Is not cost-effective

Shelterbelts

- Vegetation system downwind of a facility
- Efficacy
 - Effective in mitigating odor and dust generated from swine facilities and roads
- Readiness for adoption
 - Promising but needs field evaluation

Summary

- A surface moisture content of 20% may be a critical threshold for dust control.
- Strategies ready for producer implementation but need refinement
 - Pen surface sprinkling
 - Frequent manure removal
- Promising strategies that need further development or evaluation
 - Pen surface treatments
 - Shelterbelts
 - Increased stocking density with pen surface sprinkling