From Emission to Deposition

Flows of Nitrogen Along the Front Range

Brent W. Auvermann
Associate Professor of Biological and Agricultural Engineering
Amarillo, TX

0:55:00 to Cover All This Stuff

- 0:01:00 Overview, definitions, and acronyms
- 0:05:00 Air movement near RMNP
- 0:15:00 Sources of N along the Front Range
- 0:20:00 Atmospheric deposition of N in RMNP
- 0:35:00 Ecological effects of N enrichment in RMNP
- 0:45:00 The RMNP "glidepath" an outsider's view
- 0:52:00 Questions and responses

A Few Acronyms

- RNS reactive nitrogen species (biggies: NH_x, NO_x)
- TIN total inorganic nitrogen (TIN = NH₄-N+ NO₃-N)
- NADP National Atmospheric Deposition Program
- CASTNET Clean Air Status and Trends Network
- RMNP(I) Rocky Mountain National Park (Initiative)
- RoMANS Rocky Mountain Atmospheric Nitrogen and Sulfur study

The Basic Idea

- Pristine RMNP ecosystems evolved with low nutrient inputs
- These ecosystems now exhibit signs of ecological shifts
- The shifts are consistent with nutrient enrichment (primarily N)
- Wet deposition of N appears to have increased in the Park over the past couple of decades
- Hypothesis: Increased wet deposition of N is responsible for irreversible shifts in high alpine ecosystems
- Corollary: Reducing wet deposition of N would head off those ecological shifts

Air Movement Near RMNP

What is a Wind Rose?

- Does not necessarily represent the motion of the airmass as a whole
- Shows wind frequency X speed X direction
- Prevailing (~60%) winds at RMNP have a westerly (downslope) component
- Data may be disaggregated to show seasonality or diurnality

RMNP Wind Rose - Daytime

- Prevailing (~50%) tends to be moderate to strong, downslope (W-N) winds
- Significant component (~25%) is dominated by relatively light, upslope (SSE-SE) winds

RMNP Wind Rose - Nighttime

- Downslope (sinking, warming) winds present ~70%
- Almost no upslope (E) component at night

RMNP Wind Rose - Fall

Chinooks predominate and can be very strong

RMNP Wind Rose - Spring

- Strong downslope component
- Significant upslope, moderate speeds

RMNP Wind Rose - Summer

- Downslope component predominates, but wind speeds are not as great
- Upslope winds are light

RMNP Wind Rose - Winter

Chinooks dominant

Greeley Wind Roses

Kersey Wind Roses

2004

So What?

- Air masses over RMNP generally come from the W and NW, depending on the season; BUT
- Air masses that generate significant precipitation tend to come from the E and SE
- Wind direction in RMNP does not necessarily point directly back at the source of the air mass!

Sources of N Along the Front Range

Sources

Nitrogen compounds (e.g., NO_x, ammonia) and sulfur compounds are emitted into the atmosphere from a variety of air pollution sources, including automobiles, power plants, industry, agriculture, and fires. Colorado's Front Range is an area of rapid population growth, escalating urbanization, oil and gas development, and agricultural production. Increases in these activities result in corresponding increases in nitrogen deposition in mountain ecosystems.

Nitrogen Emissions in Colorado

Facts

- 2/3 of the state's population lives along the Front Range.
- Ammonium nitrate is a common crop fertilizer and results in emissions of ammonia.
- Some chemical transport models suggest that 25-30% of nitrate and 45-50% of sulfate is associated with emissions from within Colorado.

Source: Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) Brochure

What Happens to Emitted NH₃?

- Atmospheric residence time of NH₃ gas is fairly short (<7 days) due to its high reactivity with surfaces, with water, and with acid gases
- NH₃ sources tend to be at ground level (i. e., not stack emissions)
- Dry deposition of gaseous NH3 dominates near sources
- Wet deposition of particle-phase NH₄⁺ dominates away from sources

Source: Asman et al. (1998)

Watson et al. (1996)

- Northern Front Range Air Quality Study (NFRAQS)
- Seasonality, composition, and distribution of PM along the I-25 and US85 corridors
- Major conclusion: Study area is relatively enriched with respect to NH_3 as compared to SO_x and NO_x
- Would changes in NH₃ concentration give rise to changes in secondary fine particles (sulfates and nitrates)?

More NFRAQS Conclusions

- Wirtually all of the sulfate and nitrate in the NFR can be accounted for as secondary ammonium salts ($PM_{2.5}$)
- lf NH₃ levels were reduced by 50%...
 - ...most of the available HNO₃ would be neutralized
 - …particle NO₃ would be reduced by only 15%
- Beyond 50% reduction in NH₃, particle NO₃ would decrease proportionately with NH₃

Atmospheric Deposition in RMNP

Two Kinds of Deposition

- WET deposition rainfall, snowfall, fog
 - Gases and particles dissolve into liquid phase to form solution
 - Solution deposits on surfaces (canopies, vegetation, soils, surface water) as fog, dew or precipitation
- DRY deposition gases and particles impact or settle onto surfaces without assistance from condensing water

Anatomy of an NADP Site

Deposition (kg/ha/yr) = Precipitation (mm/wk) * Concentration (mg/l) * 0.52

Rain Gauge

Rainfall Sampler

GOOSI Maps

40.3639, -105.5806 - Google Maps

+40° 21' 50.04", -105° 34' 50.16"

1/25/08 2:58 PM

Deposition and Precipitation, CO19

NADP/NTN Site CO19

Seasonality of Wet Deposition and Precipitation, Loch Vale

Seasonal Proportion of NO₃-N and NH₄-N in Wet Deposition Loch Vale, 1996-2006

"An analysis of 1995 through 1998 CASTNET data shows no trend in dry nitrogen or sulfur deposition at the park." (RMNP, 2008)

Baron et al. (2005)

So Who's Responsible?

- This is a question known as "source apportionment"
- Source apportionment requires modeling:
 - Assumptions
 - Discretized domains (grid sizes >4 km)
 - Accepted algorithms
 - Tracers within the source domains
 - GIGO results can be no more accurate than the input data

RoMANS:

A Source-Apportionment Study

- Two models required
 - MM5 (wind fields, precipitation)
 - CAMx (chemical transport)
- Tracer sources inside and outside of CO
- Interim finding: 33% of NH₃ and 50% of NOx affecting RMNP are from CO sources

Source: Barna et al. (2007)

NH₄⁺ ion concentrations, 2004

Ammonia Emissions in Colorado

Facts

- Northeastern Colorado is a highly productive agricultural region.
- Colorado ranks 4th in the United States for confined-fed cattle, sheep, and lamb production.
- Colorado ranks 11th in the United States for pig production.

Regional Ammonia Emissions

Typical summertime ammonia emissions, primarily from agricultural sources, in the region surrounding Rocky Mountain National Park

Source: Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) Brochure

Wet Deposition Can Increase If:

- Precipitation increases*; OR
- Emissions of compounds or precursors increase within the source footprint *; OR
- Frequency of upslope conditions increases*; OR
- Any two or more of the above coincide*

^{*}All other influences remaining equal

Ecological Effects of N Deposition in RMNP

Ecological Effects of Alpine N Enrichment

- Water quality: increased N concentrations in streams and lakes
 - Eutrophication
 - Change in microbial flora (diatoms)
- Wegetation: From wildflowers to grasses and sedges
- Soil acidification as NH₄ oxidized to NO₃

Source: Baron et al. (2005)

The RMNP "Glidepath"

Wet Deposition Can Increase If:

- Precipitation increases*; OR
- Emissions of compounds or precursors increase within the source footprint *; OR
- Frequency of upslope conditions increases*; OR
- Any two or more of the above coincide*

These are the areas where mitigation strategies focus

*All other influences remaining equal

Think About That

 Two thirds (65%) of the NH₃ under consideration originates outside CO?

Cold (Beef) Carcass Weights at Slaughter Annual Means, National, 1989-2006 Cold Carcass Weight, lb

Source: CattleFax

Estes Valley Traffic Projection:

>50%
increase
over 20
years

Figure 19 Transportation Alternative

2020 Design Day Travel Patterns

Q&R