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Abstract 
A thorough understanding of (a) the technical aspects of measuring airborne particulate matter 
(PM) and (b) how to interpret those measurements in light of health-based ambient standards is 
central to ensuring that air quality regulations achieve their objectives with regard to human 
exposure to PM.  This paper takes a fresh look at the mathematics and engineering of sampler 
performance in order to specify the circumstances under which it is appropriate to infer fine-
particle concentrations from particle-size distributions of coarser PM fractions sampled with 
non-ideal samplers.  We adopt a notation that corresponds to the mathematical language of 
statistics and variable transformation.  We assume at least a working knowledge of air sampling 
techniques, particle size distributions, probability theory and integral calculus. 

Variable Definitions 
The variables in this paper are defined as follows, with units given in brackets [ ]: 

δ Aerodynamic equivalent diameter (AED) of a suspended particle [µm] 

p(δ) Differential probability that random particles within a sample will have an AED 
arbitrarily close to the value δ [µm-1] 

P(δ) Cumulative probability that random particles within a sample will have an AED 
arbitrarily close to the value δ [ ] 

C Mass of PM contained in a reference volume of air [µg] 

m(δ) Differential mass distribution of particles within a sample [µg  µm-1] 

M(δ) Cumulative mass distribution of particles within a sample [µg] 

ε(δ) Fractional penetration efficiency of a PM preseparator [  ] 

dm Mass-median diameter of a sample of PM [µm] 

dc Sampler cutpoint, or AED at which the fractional penetration efficiency is 50% [µm] 

dmax Maximum AED of all particles suspended in ambient air [µm] 

σg Geometric standard deviation [  ] 

i=x, y Subscripts denoting samplers with cutpoints dc=x and dc=y, respectively 

j=a, s Subscripts denoting PM in the ambient (a) or sampled (s) air 

Background and Theoretical Development 
Particles suspended in air react to drag, gravitational and buoyant forces according to their 
density, shape, roughness, orientation and rotation (or spin).  Their reaction to body forces is also 
related to the properties and dynamic characteristics of the air in which they are suspended. 
Because the aerodynamic properties of a suspended particle of arbitrary shape generally defy 
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derivation from first principles, those properties must be inferred using the classical, inverse 
problem of experimental dynamics:  measure the performance of the particle in a range of 
conditions, then fit the resulting performance curves with empirically-derived parameters in a 
suitable aerodynamic model such as the Navier-Stokes equation (NS) or its appropriate 
simplified forms. 
 
Complicating the matter further, ambient PM consists of a wide range of particle sizes, materials 
and shapes.  Consequently, the empirically derived aerodynamic parameters must be measured 
for the ensemble of particles, representing some kind of average of the aerodynamic parameters  
of the individual particles.  The manner in which the individual parameters are averaged (in the 
empirical sense) depends heavily on the experimental apparatus used and the fluid dynamics 
characteristic of the apparatus in its designed range of operation.  For example, to the extent that 
particle orientation affects the aerodynamic performance of individual suspended particles, 
samplers whose design flow regimes preferentially impose certain orientations (i. e., with respect 
to the flow streamlines) upon suspended particles will give rise to unique ensemble averages of 
those parameters.  Thus, empirically derived aerodynamic parameters are instrument-dependent. 

The Mathematical Background of Aerosol Measurement 
The ensemble average values of the aerodynamic parameters are also influenced by the statistical 
distribution of particle sizes in the ensemble.  The particle-size distribution (PSD) of an 
ensemble of suspended particles (henceforth, an aerosol) may be expressed in several ways.  The 
PSDs that are most relevant to current air-quality regulations and health-based standards are 
those that relate the aerodynamic performance of discrete subsets of an aerosol to the incremental 
mass of that subset in the air.  For a sample of PM having a sufficiently large number of 
particles, the PSD approaches a continuum on the range of particle sizes represented by the 
sample.  Mathematically, that relationship is expressed in the dimensionless probability 
distribution (or frequency distribution) p(δ), an example of which is graphically illustrated in 
Figure 1. 
 
 
By definition, the area under the curve p(δ) is unity5: 
 

p d( )δ δ =
−∞

∞z 1 [1] 

 
Because the function p(δ) is a dimensionless probability density function, we may multiply p(δ) 
by the total sample mass Cs to obtain a new function m(δ) having both dimension and physical 
meaning: 
 

m( ) =  C  p( )sδ δ  [2] 
 

The function m(δ) represents the differential total mass of particles in the sample having an AED 
arbitrarily close to the value δ.  In general, we may integrate m(δ) on any interval [0 < x < δ] to 
obtain the cumulative mass distribution function, M(δ): 
 
  
5For situations of practical interest, (a) aerodynamic particle diameter is strictly non-negative, and (b) ambient 
particles that remain suspended in air tend to have a maximum aerodynamic diameter, which we denote as dmax.  
In Equation [1], we have retained the full domain for the sake of complete statistical generality, but in 
subsequent developments, we have truncated the lower and upper bounds on δ at δ=0 and δ=dmax, respectively, 
with no loss in generality. 
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The function M(δ) has an important interpretation for PM sampling; it represents the total mass 
of particles within the sample having an AED less than or equal to the value δ. 
 
Finally, we may normalize the function M(δ) by dividing Equation [3] by the total mass of 
particles in the sample, Cs, to obtain the dimensionless cumulative distribution function, P(δ): 
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The function P(δ) increases monotonically and takes on values between zero and unity 
(inclusive).  P(δ) may never be greater than unity.  Physically, P(δ) represents the mass fraction 
of particles in the sample having an AED less than or equal to δ.  For example, Figure 2 is a 
graph of Ps(δ) for a manufactured dust sample comprised of dried, ground and sieved feedyard 
manure. 

The Mathematics of Sampler Performance 
Having laid the mathematical foundation for understanding PSDs of airborne PM, we now turn 
our attention to engineering terms and the corresponding mathematical functions that help us to 
describe the performance of equipment designed to sample ambient PM.  We first stipulate that, 
as a practical matter, no physical sampling device can possibly operate perfectly.  Still, it is 
useful to consider the so-called ideal sampler in order to quantify the performance of actual 
samplers. 
 
Ambient PM samplers approved for use in the federal regulatory framework are characterized by 
a preseparator, designed to collect the PM that is not relevant to the measurement, and a filter or 
membrane to collect the PM of interest.  For example, the PM10 sampler consists of a vacuum 
pump that draws ambient air through a PM10 preseparator, which nominally collects the PM 
having an AED of 10µm or greater.  The remaining particles remain entrained in the air and are 
collected on a special filter, which is then transported to a laboratory and weighed on a 
microbalance to determine the mass of PM deposited on the filter.  That mass, determined by 
gravimetric difference, is considered the mass of PM10 in the sampled air. 
 
We define the ideal sampler as a sampler that operates perfectly according to its purpose.  For 
example, if we were interested in measuring the total amount of airborne PM between 2.5µm and 
10µm AED, the ideal sampler for that purpose would preseparate from the sampled air every 
single particle having an AED outside the range 2.5-10µm, allowing all of the remaining 
particles to be captured in some measurement device.  If we were interested in only those 
particles smaller than 2.5µm, the ideal sampler would preseparate from the sampled air every 
single particle larger than 2.5µm.  Clearly, there is no single ideal sampler suitable for every 
task; the ideal sampler is defined by the purpose for which it is to be used. 
 
In most regulatory applications, particularly those involving the National Ambient Air Quality 
Standards (NAAQS), the quantity of interest is the mass of particles having an AED less than or 
equal to a given value.  For example, the NAAQS for the 24-hour average concentration of 
PM2.5, 65 µg m-3, refers to a concentration of all particles having an AED of 2.5µm or smaller.  
The ideal sampler in this case (USEPA, 1997b) is a sampler that (a) preseparates 100% of the 
particles having an AED greater than 2.5µm and (b) permits all of the particles having an AED 
of 2.5µm and smaller to be captured on a filter for subsequent gravimetric analysis.  The same 



concepts apply to the PM10 fraction; the ideal PM10 sampler preseparates all of the particles 
larger than AED=10µm and permits all of the remaining particles to be captured on a filter. 
 
To illustrate the concept of the ideal PMn sampler, where the dummy variable n is the size 
fraction [µm] of interest, we define the fractional penetration efficiency function, ε(δ), as 
follows: 
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In Equation [5], the subscripts “a” and “s” refer to the ambient (actual) and sampled properties, 
respectively; that is, the efficiency ε(δ) describes the fraction of the ambient PM that penetrates 
through the preseparator and becomes part of the sampled PM.  If ε(δ)=1.0, then, the sampler is 
100% efficient at permitting particles of AED=δ to penetrate through the sampler to the filter.  
Conversely, ε(δ)=0 indicates that the preseparator collects all of the particles of AED=δ. 

 
For the applications we are considering, the ideal PMy sampler is characterized by the piecewise-
continuous fractional penetration efficiency: 
 

ε(δ)  =  1.0  [δ<=y] [6]  
 
ε(δ)  =  0.0  [δ>y] [7]  
 

The ideal PMy sampler for y=10 (i. e., the ideal PM10 sampler) is represented by the graph of ε(δ) 
shown in Figure 3. 
 
As noted above, actual samplers – no matter how well designed – cannot achieve the step 
singularity in the function ε(δ).  Physically, the non-ideal nature of actual samplers shows up in 
two ways.  First, the preseparator will always capture some small amount of the particles smaller 
than the design threshold.  Second, the preseparator will always permit some particles larger than 
the design threshold to penetrate to the filter.  Figure 4 shows how these inaccuracies are 
expressed in terms of the fractional penetration efficiency for an actual PM10 sampler. 
 
The fractional penetration efficiency curve of a sampler is the basis for its classification as a 
Federal Reference Method (FRM) for monitoring PM (i. e., a sampler that may legally be used to 
determine compliance with the NAAQS).  The shape and location of the function ε(δ) in relation 
to an idealized penetration efficiency curve (as shown in Figure 4) indicate how precisely the 
sampler approximates the ideal sampler.  To elaborate on this point, we first define what we 
mean by a PMy sampler, noting that this general discussion then applies equally well to PM1, 
PM2.5 or PM10 samplers (y=1, y=2.5 or y=10, respectively). 
 
Let us consider a hypothetical, non-ideal sampler for which, using some reliable procedure, we 
have determined a fractional efficiency curve ε(δ).  For the class of samplers needed for NAAQS 
compliance monitoring, ε(δ) is a monotonically decreasing sigmoid whose value approaches 
unity as δ vanishes and zero at some large particle size.  Consequently, ε(δ) passes through a 
point (dc, 0.5), which is known as the sampler’s cutpoint.  At this point, the sampler’s fractional 
penetration efficiency is 50%.  Further, ε(δ) passes through a point (d0.84, 0.84).  The value of the 
abscissa corresponds roughly to the particle diameter that lies one geometric standard deviation 
(i. e., one standard deviation of the log-transformed data) from the mean.  The ratio  
 

σg=dc/d0.84 [8] 
 



is an indicator of the “sharpness of cut,” or the precision with which the preseparator 
approximates the ideal sampler’s step discontinuity at the cutpoint.  Ideal samplers (see Figure 4) 
have σg=1.0.  Taken together, the two parameters dc and σg represent performance specifications 
for an ambient sampler.  Specifically, a sampler designed to monitor PMy must have dc=y (within 
some specified tolerance) and a σg approximately equal to the ideal value of 1.0 (again, within 
some specified tolerance). 
 
In summary, as an example, the current Federal Reference Method (FRM) for PM10 sampling 
specifies three main criteria for designating a particular sampler as an FRM (USEPA, 1997a).  
First, the sampler must control the flow rate of air between 36 and 44 actual cubic feet per 
minute (acfm) for the duration of the sampling event.  Second, the sampler must have a dc 
between 9 and 11µm.  Third, the characteristic slope of the fractional efficiency curve, σg, must 
be between 1.4 and 1.6.  In general, those three considerations (flow rate, dc and σg) represent 
performance-based criteria for FRM designation.  Further, the FRM designation suggests that all 
samplers operating within those criteria will yield (a) equivalent results when operated side-by-
side and therefore (b) comparable results when operated in different locations and conditions. 
 
The latter inference, (b), is vitally important for monitoring networks because we must be 
confident that, when comparing air quality parameters at different locations, we are not 
“comparing apples to oranges.”  In other words, we must be confident that a Graseby FRM 
sampler operating in Denver, CO, a Wedding FRM sampler in Cleveland, OH, and a Rupprecht 
and Patashnick FRM sampler in Miami, FL are all measuring the same quantity.  They will yield 
different results, but the numbers must be comparable.  To ensure that the numbers are 
comparable, the samplers must be interchangeable. 

A Critique of the Use of Coarse-Fraction PSDs to Infer Fine-Fraction Concentrations 
Reliable and complete monitoring data on fine PM are hard to find and expensive to generate.  In 
fact, as the PM fraction of interest gets smaller, the precision and cost of the sampling equipment 
and methods must necessarily increase.  In the absence of such data, one obvious question that 
arises is, “can I infer fine PM concentrations from coarse PM observations?”  A practical 
example is the attempt to infer PM2.5 concentrations from a combination of PM10 measurements 
and subsequent PSD analysis of the exposed PM10 filters.  In that case, the cost- and labor-saving 
objective would be to substitute an existing ambient monitor (PM10) plus one additional step in 
the laboratory (PSD determination) for an additional, expensive and temperamental monitor such 
as the FRM PM2.5 sampler. 
The logic of this enterprise is straightforward.  Consider again the hypothetical cumulative PSD 
shown in Figure 2.  Assume for the sake of demonstration that this PSD was generated from a 
PM10 sampler.  Further, let us assume that gravimetry yielded an ambient PM10 concentration of 
100 µg m-3.  To estimate the PM2.5 concentration, according to this method, we simply read from 
the cumulative PSD the  % mass having AED<2.5µm, which in this case is 4%.  Assuming, then, 
that 4% of the total sample mass was PM2.5, we estimate that the PM2.5 concentration was 0.04 x 
100 µg m-3 = 4 µg m-3. 
 
Despite the straightforward appearance of that approach, it is fraught with subtle difficulties that 
may translate into significant errors.  The most obvious is a practical difficulty:  many 
compounds that form atmospheric PM2.5 are volatile (potentially lost during gravimetric analysis 
of PM10 filters) or soluble (potentially lost in the electrolyte solutions used for optical 
determination of PSD).  Because this difficulty is practical in nature, it is conceivable that 
changes in filter-handling protocol or selection of a more suitable suspension electrolyte could 
mitigate the errors that would otherwise result.  In addition to that practical limitation, however, 
there is a more fundamental, theoretical limitation that we now explore.   
 



To demonstrate this limitation, we first state the problem in mathematical terms.  A coarse-
particle sampler having a cutpoint at dc=y operates in PM-laden air characterized by an ambient 
mass loading Ca and an ambient, differential PSD represented by the function pa(δ).  The 
maximum particle AED in the ambient air is dmax.  A collocated fine-particle sampler having a 
cutpoint at dc=x operates in the same ambient conditions.  (The samplers will be designated PMy 
and PMx samplers, respectively, with x<y.)  The fractional penetration efficiencies of the two 
samplers are εy(δ) and εx(δ), and the sample masses, using precise gravimetry, are Csy and Csx, 
respectively.  Using some reliable means, the filter from the PMy sampler has been subjected to a 
particle-size determination, and the cumulative sample PSD is represented by the function Psy(δ).  
(Despite the additional conceptual difficulties implied by the distinction between physical/optical 
and aerodynamic particle size, we assume for the sake of argument that Psy(δ) accurately reflects 
the distribution of aerodynamic diameters in the sample.) 
 
In simple mathematical terms, the question is whether or not the product Csy Psy(x) is an accurate 
approximation of, and therefore a substitute for, the “true” value Csx.  For a fixed value of y, the 
relative error of the approximation is a function of x and is given by E(x) as follows: 
 

( )( ) sy sy sx

sx

C p x C
CE x −=  [9] 

 
The function E(x) may be rewritten in terms of the ambient PM loading and the performance 
characteristics of the samplers.  First, we re-write Equation [5] for both the PMy and PMx 
samplers: 
 

( ) ( ) ( )sy sy a a yC p C pδ δ ε δ=  [10] 
 

( ) ( ) ( )sx sx a a xC p C pδ δ ε δ=  [11] 
 
For a given value of y, we may integrate Equation [10] with respect to δ between the limits of 
[0,x] to obtain: 
 

0 0
( ) ( ) ( )

x x
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Similarly, we may integrate Equation [11] with respect to d between the limits of [0,dmax]: 
 

max max

0 0
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d d
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According to Equation [1] and inserting the physical upper and lower bounds 0<δ<dmax, the left-
hand side of Equation [13] reduces to 
 

max

0
( ) ( )

d

sx a a xC C p dδ ε δ δ= ∫  [14] 

 
The integral on the left-hand side of Equation [12] may be evaluated using Equation [4]: 
 

0
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x
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Substituting Equations [14] and [15] into Equation [9] and simplifying, we obtain a closed-form 
expression for the relative error of the approximation: 
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The roots of E(x)=0, which are comprised of those combinations of x, pa(δ), εx(δ) and εy(δ) that 
force the numerator of the right-hand side of Equation [16] to zero, delineate the conditions 
under which the approximation is exact.  Equation [16] may be rewritten in different ways to 
help determine the roots of E(x)=0.  One way is to split the second integral in the numerator into 
its [0,x] and [x,dmax] components and collect the terms having common limits of integration: 
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Because all of the functions pa(δ), εx(δ) and εy(δ) are strictly non-negative, one case in which the 
approximation is exact is if εx(δ)=εy(δ) on [0,x] and pa(δ)=0 on [x,dm].  Because y>x, it follows 
that εy(x)>0.5 by the definition of the cutpoint of the PMy sampler.  Consequently, the physical 
interpretation of these circumstances is that the PM in the ambient air has no particles larger than 
x and either that (a) both samplers are ideal or (b) the samplers are identical (i. e., x=y).  The first 
condition is reasonably plausible; for example, in a laboratory setting, we might choose to use a 
Total Suspended Particulate (TSP) sampler whose cutpoint is at 45µm to sample manufactured 
dust with a maximum particle AED of 15µm.  However, either (a) or (b) must be true to drive 
E(x) to zero.  Case (a) is, of course, physically implausible, and case (b) is trivial.  Other means 
of re-writing the numerator of Equation [16] generate fundamentally equivalent arguments.  
From Equation [17], we can therefore conclude that E(x) can never be zero.  By itself, that does 
not imply that the approximation is fundamentally flawed, only that it can never be exact.  The 
errors E(x) are strictly non-negative. 
 
We wrote a computer program in Mathcad Plus 6.0 (Mathsoft, 1995) to perform the 
computations in Equation [16] under a number of different scenarios of practical interest (see 
Table 1, compiled for x=2.5µm).  As expected, the values of E(x) were nearly always negative 
and frequently exceeded 50%.  Positive values of E(x) are attributable to errors associated with 
numerical integration and/or rounding under conditions in which the approximation is nearly 
exact. 
 
When dm>x, the logical extension of case (b) illuminates the fundamental weakness of the 
approximation.  Consider the implications of the approximate method in the limit as x 
approaches y – that is, the limiting behavior of a PMx sampler as its performance characteristics 
approach those of the PMy sampler.  This limiting behavior is shown graphically in Figure 5. 
 
For an example scenario with a uniformly distributed ambient aerosol and non-ideal samplers, 
the cumulative particle-size distribution Psy(δ) of the sampled particulate is a sigmoid with a 
mass median diameter (dm) near the sampler cutpoint.  (By definition, Psy(dm)=0.5.)  The exact 
value of Psy(x) depends on the ambient PSD, but in our Mathcad simulations, Psy(x) was 
frequently between 0.4 and 0.7 in the limit as x approaches y.  The approximate method 
stipulates that Csx=CsyPsy(x), which in the limit is approximately 0.5Csy.  Csy, though, is the mass 
of PMy determined by gravimetry.  The error is immediately obvious:  in the limit as x 
approaches y, a PMx sampler should become indistinguishable from the PMy sampler, and Csx 
should therefore approach Csy.  However, the approximate method implies that Csx=0.5Csy!  The 
relative error in this limiting case is on the order of (-)30-60%, which is roughly equivalent to the 
errors computed using the Mathcad simulation. 
 
The last point is perhaps difficult to see.  Another way of looking at the logic error is to posit (a) 
the same PMy reference sampler and (b) a collocated PMy+∆y sampler, where ∆y is a 



differentially small increment in sampler cutpoint.  All other operating parameters being equal, 
these two samplers will generate virtually the same Cs and Ps(δ).  In the case of the reference 
sampler, (a), the mass of PMy collected by the sampler is said to be Cs; in the case of sampler (b), 
however, the mass of PMy collected by the sampler is kCs, where k is a fraction approaching the 
value Psy(dcy) in the limit as ∆y vanishes (see Figure 5).  Again, the value of k will vary with the 
shape of p(δ), but only under narrowly controlled, laboratory conditions with nearly ideal 
samplers will k exhibit the correct limiting behavior for a valid approximate method, which 
would be 1.0. 

Summary 
Because of the relatively high cost of ambient monitoring for fine particles, and the variability 
associated with the cumbersome field protocols, some authors have proposed the use of particle-
size distributions in conjunction with coarse-particle monitoring data to infer fine-particle 
concentrations in narrowly defined research conditions (Herber, 1988 and Buch et al., 1998).  
The logic of the proposed, approximate method is simple and straightforward and offers real 
promise in reducing the cost of ambient monitoring for non-volatile fine particles.  However, our 
mathematical analysis shows that the approximate method gives erroneous results over a wide 
range of expected field conditions.  The practical errors, as this analysis reveals, are actually 
systemic errors resulting from subtly flawed mathematical logic.  In fact, the approximate 
method is only correct under narrowly drawn circumstances unlikely to occur in ambient 
monitoring applications.  The approximate method is most accurate when the characteristic AED 
of the fine particles in question is very small in comparison to the cutpoint of the coarse-fraction 
sampler from which the fine-particle concentration is to be inferred (e. g., inferring non-volatile 
PM2.5 concentrations from TSP measurements).  In that case, the fractional penetration efficiency 
of the coarse-fraction sampler is nearly 100% for the corresponding fine particles.  When the 
characteristic AED of the fine fraction under consideration is relatively close to the cutpoint of 
the coarse-fraction sampler, the errors of the approximation may exceed 70%.  To improve its 
accuracy for compliance monitoring, the approximate method needs to account explicitly for the 
fractional penetration efficiency of the coarse-fraction sampler in its mathematical development. 
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Figure 1. Graphical representation of an idealized (log-normal) probability distribution relating 

particle mass to the aerodynamic equivalent diameter (AED) of the particles in the 
ensemble.  By definition, the area under the curve is unity. 
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Figure 2. Cumulative probability distribution Ps(δ) and differential probability distribution ps(δ) 

for a sample of manufactured feedyard dust.  Note that the maximum value of δ is 
100µm, reflecting the fact that 100% of the sample mass is composed of particles 
having an AED less than or equal to 100µm.  The distributions were determined using 
a Coulter Counter Multisizer (Herber, 1988). 



  
 

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

AED (µm)

Fr
ac

tio
na

l P
en

et
ra

tio
n 

Ef
fic

ie
nc

y

   
Figure 3. Fractional penetration efficiency ε(δ) for an ideal sampler designed to sample 

particles having an AED less than or equal to 10µm. 
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Figure 4. Fractional penetration efficiency curves (a) for an ideal PM10 sampler and (b) for an 

actual (or non-ideal) PM10 sampler.  In this case, “ideal” is defined in terms of a 
sampling objective to measure the total mass of PM having an AED less than or equal 
to 10µm.  Note the logarithmic scale on the horizontal axis. 



 
Table 1. Summary of Test Scenarios and Associated Relative Errors E(x) Resulting from the 

Approximate Method. 
  
 

Run # p(δ) Shape Class dmax or dpeak dcx dcy σg E(dcx) Comments
(mm) (mm) (mm) (%)

1 Uniform dmax=5 2.5 10 1 -1.2 Ideal PM10 samplers with dmax<<dcy and uniform p(δ) on [0,5]
2 Uniform dmax=25 2.5 10 1 -41.1 Ideal PM10 samplers with dmax>dcy and uniform p(δ) on [0,25]
3 Uniform dmax=100 2.5 10 1 -76.7 Ideal PM10 samplers with dmax>>dcy and uniform p(δ) on [0,100]
4 Uniform dmax=5 2.5 45 1 0.3 Ideal TSP samplers with dmax<<dcy and uniform p(δ) on [0,5]
5 Uniform dmax=25 2.5 45 1 -40.2 Ideal TSP samplers with dmax<dcy and uniform p(δ) on [0,25]
6 Uniform dmax=100 2.5 45 1 -76.2 Ideal TSP samplers with dmax>>dcy and uniform p(δ) on [0,100]
7 Triangular dpeak=5 2.5 10 1 -89.5 Ideal PM10 samplers with dcx<<dcy and triangular p(δ)
8 Triangular dpeak=5 9 10 1 -43.9 Ideal PM10 samplers with dcx close to dcy and triangular p(δ)
9 Triangular dpeak=5 2.5 45 1 -89.3 Ideal TSP samplers with dcx<<dcy and triangular p(δ)

10 Uniform dmax=5 2.5 10 1.5 -9.7 Non-ideal PM10 samplers with dmax<<dcy and uniform p(δ) on [0,5]
11 Uniform dmax=25 2.5 10 1.5 -44.5 Non-ideal PM10 samplers with dmax>dcy and uniform p(δ) on [0,25]
12 Uniform dmax=100 2.5 10 1.5 -77.3 Non-ideal PM10 samplers with dmax>>dcy and uniform p(δ) on [0,100]
13 Uniform dmax=5 2.5 45 1.5 -7.5 Non-ideal TSP samplers with dmax<<dcy and uniform p(δ) on [0,5]
14 Uniform dmax=25 2.5 45 1.5 -43.1 Non-ideal TSP samplers with dmax<dcy and uniform p(δ) on [0,25]
15 Uniform dmax=100 2.5 45 1.5 -76.7 Non-ideal TSP samplers with dmax>>dcy and uniform p(δ) on [0,100]
16 Triangular dpeak=5 2.5 10 1.5 -89.9 Non-ideal PM10 samplers with dcx<<dcy and triangular p(δ)
17 Triangular dpeak=5 9 10 1.5 -50.5 Non-ideal PM10 samplers with dcx close to dcy and triangular p(δ)
18 Triangular dpeak=5 2.5 45 1.5 -89.6 Non-ideal TSP samplers with dcx<<dcy and triangular p(δ)
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Figure 5. Graphical illustration of the limiting behavior of the approximate method as the 
cutpoint of the fine-particle sampler approaches the cutpoint of the coarse-particle 
sampler.  Note that the axes have been transposed from the traditional configuration 
for this plot of Ps(δ). 


