Extinction Efficiency of Feedyard Dust

Brent Auvermann, Naidu Paila, Jeetendra Upadhyay and Jack Bush

Texas Agricultural Experiment Station

Amarillo, TX

What We're After

An open-path means of estimating PM concentrations uniquely associated with emissions from open-lot livestock facilities (beef, dairy, sheep, goats)

Why Transmissometry?

- Visibility corresponds to human experience in ways that μg/m³ never will
- TCEQ gave us a transmissometer for free

Defining a Few Terms

- Scattering and Absorption
- Atmospheric Extinction
- Extinction Efficiency
- Deliquescence

Scattering and Absorption

Atmospheric Extinction

ATMOSPHERIC EXTINCTION

RAYLEIGH (10 MM-1)

200 Mm⁻¹

RH=67.5%

RH=75%

SEM PHOTOS COURTESY DR. SARAH BROOKS, TAMU ATMOSPHERIC SCIENCES

MONITORING DEVICES AND LAYOUT

TRANSMISSOMETER

TEOM-PM₁₀

TEOM-TSP

Weaknesses of the Approach

- TEOM is point measurement; LPV is a pathaveraged measurement
- TEOM inlet is not precisely in centerline of LPV beam cone
- LPV beam cone is inclined to ground surface
- Time-series LPV and TEOM data are autocorrelated

MONTHLY 24-HR EXTREMA

- TIME-RESOLVED
 DATA (1-MIN AVG.)
- LPV AND TEOM

 DATA ARE NICELY

 CORRELATED
- LPV PICKS UP VEHICLE TRAFFIC
- PM₁₀/TSP RATIO

1-Minute Mass Concentration (μg/m³)

SEPTEMBER 6, 2005

5-Minute Mass Concentration (μg/m³)

OCTOBER 1, 2005

5-Minute Mass Concentration (μg/m³)

NOVEMBER 13, 2005

5-Minute Mass Concentration (μg/m³)

JANUARY 30, 2006

5-Minute Mass Concentration (μg/m³)

FEBRUARY 1, 2006

5-Minute Mass Concentration (μg/m³)

MARCH 31, 2006

5-Minute Mass Concentration (μg/m³)

APRIL 6, 2006

MAY 28, 2006

JUNE 10, 2006

▲ DWPM ◆ DWTSP — Linear (DWPM) — Linear (DWTSP)

5-Minute Mass Concentration (μg/m³)

JULY 19, 2006

EXTINCTION EFFICIENCIES

Issues in the Spotlight

- Looping behavior in diurnal LPV-TEOM traces
- Plume development vs. LPV incline is a time-lag phenomenon responsible for looping behavior?
- Predictive value of extinction efficiency model vs. data autocorrelation and statistical rigor

Deliquescence and Hysteresis

3b

2.10

Agricultural Aerosol, Shape Group A, 2.5-10µm (N=10)

Agricultural Aerosol, Shape Group B, 2.5-10µm (N=10)

Agricultural Aerosol, Shape Group C, 2.5-10µm (N=9)

1.50

0.90

20

40

60

80

100

Relative Humidity, %

- Looping behavior follows clear, diurnal pattern
- Deliquescence threshold RH~75%
- Efflorescence threshold RH~60%
- Deliquescence dominated by narrow fraction of particle size, shape

Graph courtesy Dr. Sarah Brooks, TAMU

What the inertial preseparator "sees"

What the mass transducer measures

Particle-Size Distribution

- Linear model defies the nature of a wellgraded aerosol
- Both hygroscopicity and dry extinction efficiency are strongly AED-dependent

$$\beta_{ext} = \beta_{Ray} + C_{PM} \int_{\delta=0}^{\delta=\delta_{max}} \frac{\partial \beta_{ext}}{\partial C(\delta)} p(\delta) d\delta$$

$$\beta_{ext} = \beta_{Ray} + C_{PM} \sum_{i=1}^{n} \frac{\partial \beta_{ext}}{\partial C_i} p(\delta_i)$$

Major Conclusions

- We are short of a truly predictive model for $C=f(\beta_{ext})$, but the current values for bulk extinction efficiency of feedlot PM are within ranges reported by Malm (1999) for "coarse mass;" success is likely if...
- Hygroscopicity affects both LPV and TEOM measurements, but in different ways
- "Bulk" extinction efficiency is related to aerosol PSD, RH and corral-surface conditions
- Would prefer to have a laser-based LPV to avoid having to incline the open path

The End

Storage Bin

