

Citation

Engels, B., K. J. Lim, J. Y. Choi and L. Theller. 2004. Chapter 14: Evaluating environmental impacts. In: *Carcass Disposal: A Comprehensive Review*. Literature review prepared for USDA-APHIS by the National Agricultural Biosecurity Center Consortium, Carcass Disposal Working Group, March 2004 review draft.

Conclusions of Iowa Study

- Signals of carcass presence persist; complete decay takes 2 years or more
- Elevated Cl, TDS, BOD and NH₄⁺ "within or very near" burial zones
- Extent of contamination depends on local groundwater velocity field; was found only within 2 m of trenches in two case studies

Ground Water Quality: Burial's #1 Threat

- "Burial of carcasses is likely to have the greatest impact on water quality of the carcass disposal techniques discussed."
- UK: 24% of incidents of surface and ground water quality impairments from 2001 carcass disposal events due to burial in high-water-table areas
- Leachate quality needs to be assessed early in the disposal event
- Recommended analytes: Cl, NH₄, NO₃, conductivity, total coliforms & E. coli

Ground Water Risks of Other Disposal Techniques

- Incineration
 - Atmospheric deposition of fumes and smoke
 - Residue (ash) requires disposal or beneficial use
 - Introduces fuel-borne contaminants (e. g., metals)
- Alkaline Hydrolysis
 - Requires disposal of digestate
 - Land application may require monitoring if ground water is shallow or soils are fractured
- Composting
 - Requires subsequent disposal
 - May generate leachate
 - Varmints may distribute carcass parts before they are stabilized

Air Pollution (cont'd)

- Composting: main threats are odors and bioaerosols
 - Good management mitigates both
 - Most enteric pathogens do not persist long as viable organisms when aerosolized

Conclusions

- Most so-called "disposal" techniques are actually "treatment" or "stabilization" techniques
 - Alkaline hydrolysis
 - Composting
 - Incineration
 - Processes generate other waste streams with environmental or ecological significance
 - Environmental risks associated with waste streams and final beneficial use or sequestration

							disposal methods.	Note
values may	y not total	100% as oper	rations may use	more than or	ne disposal m	ethod.		

Disposal Method	Feedlot Cattle*	Dairy Cows ^b	Weaned Pigs ^c	Sheep ^d	Layer Hens'
Buried on operation	10.7 (5.3)	22.7	37.8 (11.5)	51.7 (27.1)	
Landfill	1.6 (0.5)	1.9		7.5 (6.9)	-
Rendering	94.4 (94.1)	62.4	45.5 (68.0)	2.3 (4.2)	32.0 (41.4)
Incineration/Burn		2.2	11.6 (6.0)	12.9 (7.5)	9.0 (10.4)
Composting		6.9	18.0 (12.7)	6.9 (5.0)	15.0 (11.7)
Leave for scavengers	-			25.3 (47.4)	
Covered deep pit					32.0 (17.9)
Other	0.4 (0.1)	3.9	2.5 (1.8)	2.6 (1.9)	16.1 (18.6)

a(USDA, 2000a

(USDA, 2002a)

"(USDA, 2001a) "(USDA, 2002b)

*(USDA, 2002b)

Species	Total	Labor	Total		Estimated Costs		Estimated
	Annual Mortalities	Required for Burial per Mortality*	Hours Required for Burial	Total Labor Cost (\$10/hr)	Equipment Cost (\$35/hr)	Total Cost	Cost Per Mortality ^b
Cattle over 500 bs)	1,721,800	20 min ea	573,930	\$5,739,300	\$20,087,670	\$25,827,000	\$15.00
Calives	2,410,000	10 min ea	401,660	\$4,016,600	\$14,058,330	\$18,075,000	\$7.50
Neaned logs	6,860,000	10 min ea	1,143,330	\$11,433,330	\$40,016,670	\$51,450,000	\$7.50
Pre- weaned nogs	11,067,700	10 min per group of 10	184,460	\$1,844,610	\$6,456,100	\$8,300,780	\$7.50 per group of 10
Other	832,700	10 min ea	138,780	\$1,387,830	\$4,857,300	\$6,245,250	\$7.50
TOTAL	22.892.200		2,442,160	\$24,421,670	\$85,476,070	\$109,898,030	

TA	ABLE 4.	Approximate	time required	to exc	avate buris	I trenches	of varior	is volume	using	three	equipment
typ	oes (adap	oted from Lane	e, 2003).								

Carcass Units @ 1000 lbs ea	Approx. Excavation Volume	Approx. Alternative Trench Dimensions	Арр	roximate Excavatio (Hours)	n Time
1000 lbs ea	Required*	(L x W x D)	13 yd scraper (78 cu yd/hr)	15 yd scraper (103.3 cu yd/hr)	27 yd scraper (162.03 cu yd/hr
5,000	7,500 cu yd (202,500 cu ft)	450 ft. x 45 ft x 10 ft 250 ft x 81 ft x 10 ft	96.2	72.6	46.3
10,000	15,000 cu yd (405,000 cu ft)	450 ft x 90 ft x 10 ft 250 ft x 162 ft x 10 ft	192.3	145.2	92.6
25,000	37,500 eu yd (1,012,500 eu ft)	450 ft x 225ft x 10 ft 180 ft x 562 ft x 10 ft	480.8	363.1	231.5
50,000	75,000 cu yd (2,025,000 cu ff)	450 ft x 450 ft x 10 ft 180 ft x 1125 ft x 10 ft	961.5	726.2	462.9

Design and Operation

- Decomposition of carcass slows by two orders of magnitude in burial as compared to carcasses exposed to the elements
- When relying on natural attenuation of noxious products, optimal soil texture is sand/clay mix with low porosity

Why I Prefer Composting

- On-site method for routine, average mortality
- Accelerates decomposition by >3 orders of magnitude as compared to burial
- Above-ground method remains visible, harder to ignore or pretend "problem solved"
- Environmental impact can be seen or smelled rather quickly
- Mostly subject to known, controllable risk factors
- Land application may diffuse environmental risk
- Persistence of resistant organisms is an unknown but the same is true with burial!

You've Got Other Options Burial (tut, tut) Incineration (\$\$\$, air quality regs) Biological and chemical digestion Pitch 'em out back

• The cooler the pile, the easier the screw-up • Small piles can't insulate themselves • Oversized piles reduce O₂/CO₂ transfer • Optimal pile size depends heavily on the distribution of pore sizes

A Few Relevant Lessons from the Taiwanese

- Left to their own devices, large, intact carcasses will rot from the inside out
- Rotting carcasses generate lots of nasty gases
- Intact skin makes a decent balloon
- The larger the carcass, the more spectacular the failure

C:N Ratios of Some Carbon Sources						
Feedstock	N (%db)	C:N Ratio	C (%db)			
Fruit wastes	1.5	35	52.5			
Yard wastes	1.3	23	29.9			
Paper	0.3	173	51.9			
Sawdust	0.1	511	51.1			
Grass clippings	3.7	15	55.5			
Leaves	0.9	48	43.2			
Produce waste	2.2	20	44.0			
Food wastes	3.2	16	49.9			
Pine wood shavings	0.1	723	72.3			
Oat straw	1.1	48	52.8			
Wheat Straw	0.3	128	38.4			

Site selection Right next to the road or other critical stuff Bare, sandy soils Sheltered from the wind Base material Hydrophobic Thin Easily compressed

Wrapping It Up • Failure is an option - Choose a location with bare, sandy soil - Use whatever nasty waste materials you have on - Soak 'er good - Show off those body parts - Walk away • Get region-specific advice - Regulations - Carbonaceous feedstocks - Land application guidelines

A Tale of Five Carcasses 1. 98% beef manure with hay, 450-lb calf, started 6-7-04 2. 100% beef manure, 400-lb calf, start 4-16-04

- 3. Horse manure and bedding, 400-lb calf, start 4-16-04
- 4. 50/50 beef manure/hay, 600-lb calf, start 4-16-04
- 5. Beef manure and hay, 400-lb calf, start 6-23-

Other Relevant Data

- Ending moisture contents ranged from 32-47% wet basis
- C:N ratio "conventional wisdom" needs to be reconsidered, or at least taken with salt grains
 - Excellent results in rainy weather even with C:N of 11 or 12 (manure only; manure + hay)
 - C:N ratio and porosity distribution show some interactions in overall pile performance
 - "OK, it works in practice, but does it work in theory?"

