RECENT DEVELOPMENTS IN AIR QUALITY FROM DAIRIES AND CATTLE FEEDYARDS

Brent Auvermann Texas Cooperative Extension Texas Agricultural Experiment Station Amarillo, TX

Acknowledgments

- Spyros Pandis, atmospheric chemist, CMU
- Rich Scheffe, USEPA-OAQPS
- N. Andy Cole and Rick Todd, USDA-ARS
- David Parker, agricultural engineer, WTAMU
- Saqib Mukhtar, agricultural engineer, TAMU

Where We're Going

- 1. Quickly: what we care about in air quality, and why
- 2. A closer look at the biggies, what's been done about them lately, and what it all implies
- 3. A few closing observations

WHAT'S ALL THE FUSS?

- Ammonia (NH₃)
- Particulate Matter (PM)
- Odors
- Volatile Organic Compounds (VOCs)
 - VOC
 - RVOC
 - HRVOC
 - OVOC

WHAT'S ALL THE FUSS?

- Hydrogen Sulfide (H₂S)
- Ground-Level Ozone (O₃)
- Greenhouse Gases
 - CO_x
 - $-N_{x}O$
 - $-C_xH_y$
 - others

NH₃ Has Some Issues

- · Monitoring and reporting requirements under
- **EPCRA?**
- Hazardous substance Reportable quantity = 100 lb
- Neutralizes acid gases (e. g., SO_x, NO_x)

 Gaseous precursor to fine PM
 Increases NH₃'s atmospheric residence time
 Helps reduce visibility
- Emissions represent a waste
 - Energy!
- Tremendously reactive and "sticky"

OPEN-LOT SYSTEMS

• Beef feedyards

Excreted N 90% of N consumed in feed (Bierman et al., 1996)

• Open-lot dairies

BACK-OF-THE-ENVELOPE STUFF

- Assuming an industry-wide (cattle feeding) Nuse efficiency of 70%, commercial yards larger than 500 head (!) could be subject to EPCRA
- The N-use efficiency required for a 35,000-hd feedyard to emit less than 100 lb/d? >99%
- The N-use efficiency required for a 2,000-hd dairy to emit less than 100 lb/d? >95%

A range of emission factors that expresses the most probable, scientifically justifiable, seasonalized, daily NH₃ emission flux from feedyards and dairies as a function of herd size, stocking density or other appropriate measure of capacity or throughput

AVAILABLE METHODS

- Mass balance
- Nutrient ratio (N:P)
- Direct approaches
 - Surface isolation flux chambers
 - Wind tunnels
- Envelope approaches Dispersion/box models - Gaussian (ISCST, AERMOD)
 - Lagrangian stochastic backward, forward
 - Integrated horizontal flux (IHF)
 - Flux-gradient
 - Box

Method	Beef	Dairy	Comments
	Lb N/1,0)00 hd-d	
N Balance	195	<650	Uncertainty analysis nearly complete; 30% during winter, 70% during summer: Includes NH ₃ and other gaseous N losses
N:P Ratio	213		Includes NH_3 and other gaseous N losses
Flux Chamber	82	26 (OL) 38 (FS)	Dairy #1 (FS): 54 ± 27 (S); 21 ± 22 (W) Dairy #2 (OL): 34 ± 3 (S05); 17 ± 2 (S04) Beef in summer
Flux- Gradient	191		Uncertainty analysis underway
bls/Opl	182		Uses open-path lasers to measure N
Box Model	191		여행 영양 영양 영양 영양

Findings				
Method	Beef	Dairy	Comments	
	% of Fed N			
N Balance	44	<80	Uncertainty analysis nearly complete (beef)	
N:P Ratio	48		Varies from 20-51% depending on source material (fresh manure, pen surface, compost)	
Flux Chamber	18	3 (OL) – 5 (FS)	Herds are ~15% dry cows, ~85% lactating; excreted N is 79% of fed N	
Flux- Gradient	43		Uncertainty analysis underway	
bls/OPL	41		Uses open-path lasers to measure N	
Box Model	31-55			

NUCLEATION

- In aqueous solution, two or more species react to form a low-solubility product known as a precipitate
- Because the precipitate has relatively low solubility, it immediately forms a solid particle in aqueous suspension
- The particle provides a surface on which more of these reactions can occur

A PRIMER ON PM

- Particle "diameter" is kind of a misnomer Shape, density and volumeAerodynamic equivalent diameter?Equivalent spherical diameter?
- Not all PM is created equal Mechanically vs. chemically derived
 Inert vs. reactive
 Chemical vs. biological vs. physical activity
- Physiological significance Composition x size x dose
 Inhalable vs. respirable

FRACTIONS OF INTEREST PM₁₀ PM_{2.5} PM_{10-2.5} or PM_{coarse}

Particle Type	<u>Dry</u> Extinction Efficiency (m²/g)
Sulfates	3.0
Organics	3.0
Elemental Carbon	10.0
Nitrates	3.0
Soil Dust	1.25
Coarse Particles	0.6
Feedyard PM ₁₀ /TSP	0.5-0.6/0.3-0.4

Continuous PM Monitoring, Feedyard "C"

- Diurnal concentration trends
- PM₁₀/TSP ratio
- Dispersion modeling to infer emission rate
- Federal reference methods vs. continuous methods
- Visibility vs. PM concentration & RH

Take These Home With You

- In the West, relying on water alone for openlot dust control is a no-no
- Manure harvesting

 reduces dust potential directly AND
 - makes applied water go further
- Ammonia emissions are ~40-50% of fed N
- Abatement measures?
- We know how to do it
- Big money, big energy, big hassle