

2019 Texas Panhandle Replicated Agronomic Cotton Evaluation (RACE)

Jourdan Bell, Extension and Research Agronomist, Amarillo Murilo Maeda, Extension Cotton Specialist, Lubbock Kevin Heflin, Program Specialist, Amarillo Carla Naylor, Research Associate, Amarillo Preston Sirmon, Extension Assistant, Amarillo <u>Collaborating County Agents by County:</u> Curtis Preston, Bailey County Agent Mike Bragg, Dallam County Agent Rick Auckerman, Deaf Smith County Agent Matt Whitely, Hansford County Agent Kristy Slough, Hutchinson County Agent Marcel Fischbacher, Moore County Agent Sergio Mendez, Parmer County Agent John Villalba, Swisher County Agent

2019 Texas Panhandle Replicated Agronomic Cotton Evaluation (RACE)

Lis	st of Figures Page
1. 2.	Distribution of growing degree days (GDD60) accumulated from planting3 Four-year average growing degree days (GDD60) accumulated at Texas A&M AgriLife Panhandle RACE trial locations by production month and total seasonal accumulation
3.	Comparison of lint yield between irrigation initiated at two different development periods (pinhead square (PHS) and peak bloom) in the Texas A&M AgriLife RACE trials at the NPGCD
	WCC
4.	Bloom retention in NG2982 B3XF at Texas A&M AgriLife RACE trials located at Dallam County and NPGCD WCC
5.	Daily maximum and minimum temperatures and precipitation at Texas A&M AgriLife
	RACE trials located at Dallam County and NPGCD WCC in August 2019 during the
	bloom evaluation period17
Lis	st of Tables
1.	2019 Agronomic information by location including irrigation, precipitation, GDDs, and harvest date5
2.	Characteristics of varieties evaluated in 2019 Panhandle RACE trials
3.	Four-week post planting stand counts by location7
4.	Four-week post planting stand counts as a fraction of the planted population8
5.	2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots
	in Dallam County; Jay Willard Cooperator. Reported by maximum lint yield9
6.	2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots
	on the Hansford-Sherman County line; Greg Slough Cooperator

- 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots located at the North Plains Groundwater Conservation District's Water Conservation Center where irrigation was initiated at pinhead square; Stan Spain cooperator....11
- 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots located at the North Plains Groundwater Conservation District's Water Conservation Center where irrigation was initiated at peak bloom; Stan Spain cooperator......12
- 10. 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots in Swisher County; Jeremy Reed cooperator. Swisher County trial planted on 40-inch rows.

2019 Texas Panhandle Highlights

The Texas Panhandle RACE trials provide regional producers a comparison of top cotton varieties marketed for Panhandle cotton production systems. Weather-related challenges from planting through harvest including poor stand establishments, hail injury, crop disease, in-season water stress, and freeze related quality discounts resulted in 2019 being one of the most challenging cotton seasons on record. Regionally, below-average spring temperatures resulted in limited growing degree day (GDD) accumulation in May (Fig. 1). Hot-dry conditions in July and early-August increased crop water demands and resulted in crop stress on dryland and limited irrigated fields.

The 2019 Texas Panhandle RACE Trials were planted at nine locations under varying crop rotations, row spacings and populations (Table 1), and an additional three locations were planned but not planted due to planting delays in May. Four locations were terminated as a result of seedling disease and poor stands (Carson, Deaf Smith, Hutchinson, and Moore/Sunray). Early to early-mid maturing double and triple herbicide stacked varieties were planted at each location as a seed company entry or cooperating producer request.

Figure 1. Distribution of growing degree days (GDD60) accumulated from planting for locations where a Texas A&M AgriLife weather station is located.

Although 2019 presented many cotton production challenges, cumulative GDD accumulation (2120) was comparable to the recent four-year average (2176) (Fig. 2). Evaluation of the monthly GDD distribution demonstrates the importance of May and June heat accumulation in Texas Panhandle production systems to optimize production. While GDD accumulation is often low in May, June accumulation is necessary to speed up early-season crop development. Inefficient GDD accumulation in May 2019 and below average GDD accumulation in June 2019 resulted in the crop not initiating squares until early July at most locations. This data also validates producer concerns and potential inadequacies with the use of historical GDD models in non-traditional cotton production environments where >2300 GDDs is the standard from harvest to maturity.

Figure 2. Four-year average growing degree days (GDD60) accumulated at Texas A&M AgriLife Panhandle RACE trial locations by production month and total seasonal accumulation.

Table 1. 2019 Agronomic information by location.

County	Carson	Dallam	Deaf Smith	Hansford - Sherman	Hutchinson	Moore	Parmer	Moore	Swisher
Location (Nearest Town)	Groom	Conlen	Hereford	Gruver	Morse	Dumas	Muleshoe	Sunray	Kress
Elevation (ft.)	3,255	3,819	3,816	3,176	3,205	3,661	4,068	3,507	3,471
Cooperator	Denny Babcock	Jay Willard	Frankie Bezner	Greg Slough	Craig McCloy	NPGCD - Stan Spain	Tony Beauchamp	Tommy Cartrite	Jeremy Reed
County Agent(s)	Jody Bradford	Mike Bragg	Rick Auckerman	Kristy Slough & Matt Whitely	Kristy Slough & Matt Whitely	Marcel Fischbacher	Curtis Preston, Sergio Garza, & J.D. Gonzales	Marcel Fischbacher	John Villabla
Irrigation	Dryland	Irrigated	Irrigated	Irrigated	Irrigated	Early and Late	Irrigated	Dryland	Irrigated
Irrigation inches		3.5				7 and 4			
Precipitation inches		6.9	13.73	11.5		11.7	14.8		8.7
Previous crop	Wheat	Corn	Corn	Cotton w/ wheat cover	Corn	Corn	Corn	Fallow	Sorghum
Herbicide Technologies	GL and XF	Only XF	GL and XF	GL and XF	GL and XF	Only XF	Only XF	GL and XF	GL and XF
Planting Date	5/18/2019	5/29/2019	5/3/2019	5/15/2019	5/16/2019	5/14/2019	5/6/2019	5/6/2019	5/31/2019
Planting Pop. (Seeds/ac)	35,000	45,000	50,000	55,000	80,000	66,000	40,000	54,000	50,000
Harvest Date	Terminated due to disease and poor vigor	11/11/2019	Terminated due to disease and poor vigor	11/15- 11/16/2019	Terminated due to crusting and poor vigor	11/15/2019	11/14/2019	Hailed out 6/22/19	11/13/2019
Varieties							CP3475 B2XFŧ		
#Farmer entry				DG3385 B2XFł		DG3385 B2XFł			
								DP1522 B2XFł	
	DP1822 XF							DP1822 XF	
		DP1820 B3XF	DP1820 B3XF	DP1820 B3XF	DP1820 B3XF	DP1820 B3XF	DP1820 B3XF		DP1820 B3XF
		DP1908 B3XF	DP1908 B3XF	DP1908 B3XF	DP1908 B3XF	DP1908 B3XF	DP1908 B3XF		DP1908 B3XF
	DP1909 XF							DP1909 XF	
	FM1320 GL		FM1320 GL	FM1320 GL	FM1320 GL			FM1320 GL	FM1320 GL
	FM1621 GL		FM1621 GL	FM1621 GL	FM1621 GL			FM1621 GL	FM1621 GL
	FM1888 GL		FM1888 GL	FM1888 GL	FM1888 GL			FM1888 GL	FM1888 GL
	FM2398 GLTP		FM2398 GLTP	FM2398 GLTP	FM2398 GLTP			FM2398 GLTP	FM2398 GLTP
	NG2982 B3XF	NG2982 B3XF	NG2982 B3XF	NG2982 B3XF	NG2982 B3XF	NG2982 B3XF	NG2982 B3XF	NG2982 B3XF	NG2982 B3XF
	NG3406 B2XFł						NG3406 B2XF		
	NG3640 XF	NG3640 XF	NG3640 XF	NG3640 XF	NG3640 XF		NG3640 XF	NG3640 XF	NG3640 XF
	NG3930 B3XF	NG3930 B3XF	NG3930 B3XF	NG3930 B3XF	NG3930 B3XF	NG3930 B3XF		NG3930 B3XF	NG3930 B3XF
	NG3956 B3XF	NG3956 B3XF	NG3956 B3XF	NG3956 B3XF	NG3956B3XF	NG3956 B3XF	NG3956 B3XF	NG3956 B3XF	NG3956 B3XF
									Phy250 W3FEł
									Phy350 W3FEł

Table 2. Characteristics of varieties evaluated in 2019 Panhandle RACE trials. All variety characteristics are obtained from company variety descriptions. Varieties represented are either entered by seed companies or requested by cooperating producers.

Variety	Maturity	Herbicide Package	Leaf Type	Storm Tolerance*	Plant Height	Mic	Vert.	Bacterial Blight
CP3475 B2XFł	Early	Glyphos., Glufos., and Dicamba	Semi-Smooth	3	Medium	4.5-4.8	Good	Susceptible
DG3385 B2XFŧ	Early	Glyphos., Glufos., and Dicamba	Semi-Smooth	7	Medium	4.3-4.7	Good	NA
Deltapine1522 B2XFł	Early-Med	Glyphos., Glufos., and Dicamba	Light Hair	5	Medium	4.3	Susceptible	Susceptible
Deltapine1822 XF	Early-Med	Glyphos., Glufos., and Dicamba	Semi-Smooth	3	Med-Tall	4.3	Moderate	Resistant
Deltapine1820 B3XF	Early-Med	Glyphos., Glufos., and Dicamba	Semi-Smooth	3.5	Med-Tall	4.1	Moderate	Resistant
Deltapine1908 B3XF	Very Early-Early	Glyphos., Glufos., and Dicamba	Smooth	4	Med-Tall	3.4	Mod-Susceptible	Resistant
Deltapine1909 XF	Very Early-Early	Glyphos., Glufos., and Dicamba	Smooth	5	Med-Tall	3.6	Mod-Susceptible	Resistant
FiberMax 1320 GL	Very Early	Glyphosate and Glufosinate	Semi-Smooth	7	Short	3.5	Fair	Susceptible
FiberMax 1621 GL	Early	Glyphosate and Glufosinate	Semi-Hairy	6	Medium	4.2	Fair	Resistant
FiberMax 1888 GL	Early-Med	Glyphosate and Glufosinate	Semi-Smooth	6	Medium	3.6	Fair	Resistant
FiberMax 2398 GLTP	Medium	Glyphosate and Glufosinate	Semi-Smooth	5	Med-Tall	4.4	Very Good	Resistant
NexGen 2982 B3XF	Early	Glyphos., Glufos., and Dicamba	Semi-Smooth	9	Medium	4.0-4.2	Very Good	Resistant
NexGen 3406 B2XFt	Early-Med	Glyphos., Glufos., and Dicamba	Semi-Smooth	6	Medium	4.4-4.6	Good	Susceptible
NexGen 3640 XF	Early-Med	Glyphos., Glufos., and Dicamba	Smooth	6	Med-Tall	4.4-4.8	Very Good	Resistant
NexGen 3930 B3XF	Early-Med	Glyphos., Glufos., and Dicamba	Semi-Smooth	7	Med-Tall	4.1-4.5	Very Good	Resistant
NexGen 3956 B3XF	Early-Med	Glyphos., Glufos., and Dicamba	Semi-Smooth	8	Med-Tall	4.3-4.7	Very Good	Resistant
Phy250 W3FEł	Early	Glyphos., Glufos., and 2-4D	Smooth	9	Short	4.1	Excelent	Resistant
Phy350 W3FEł	Early-Med	Glyphos., Glufos., and 2-4D	Semi-Smooth	8	Med-Tall	4.2	Excelent	Resistant

*Storm Tolerance (1-9): 1=Loose Boll, 9=Tight Boll from Company Variety Descriptions.

Wariety included at the producer's request.

All variety descriptions, rankings and characteristics obtained from on-line seed company details.

	Carson	Dallam	NPGCD	NPGCD	Shorman	Mooro	Swishor
	Carson	Dallalli	(Early Irr.)	(Late Irr.)	Sherman	Moore	Swisher
Planted Seeds/Acre	35,000	45,000	66,000	66,000	55,000	54,000	50,000
			Meas	sured plants	s/acre		
CP3475 B2XFł	*						
DG3385 B2XFt			33,541	41,164	40,220		
DP1522 B2XFł						15,754	
DP1822 XF	17,860					17,134	
DP1820 B3XF		35,864	25,483	31,363	36,155		38,228
DP1908 B3XF		34,848	40,075	38,551	36,300		38,555
DP1909 XF	16,698					11,761	
FM1320 GL	20,038				42,108	13,213	38,990
FM1621 GL	18,150				40,075	10,600	34,307
FM1888 GL	23,522				43,705	21,344	40,515
FM2398 GLTP	19,021				37,897	12,778	39,535
NG2982 B3XF	23,377	38,768	38,986	40,075	47,045	22,361	40,951
NG3406 B2XFł	18,803						
NG3640 XF	17,424	34,412			40,511	14,230	36,485
NG3930 B3XF	21,344	35,138	35,066	28,967	38,478	23,958	36,485
NG3956 B3XF	18,731	31,073	34,630	39,857	34,848	16,408	37,030
Phy250 W3FEł							38,663
Phy350 W3FEŧ							41,822
Trial Average	19,543	35,017	34,630	36,663	39,758	16,322	38,464
CV, %	28	11	18	20	41	41	13
p-value	< 0.0001	0.0004	0.0023	0.0042	0.0308	< 0.0001	0.2840
LSD	4,200	3,042	6,458	7,467	NS	9,427	NS

Table 3. Four-week post planting stand counts by location.

*Varieties not planted at the respective location.

HFarmer entry

Carson and Moore County trials failed, but stand counds measured prior to crop termination.

	Caraan	Dellem	NPGCD	NPGCD	Charman	Maara	Swieher	Averege
	Carson	Dallam	(Early Irr.)	(Late Irr.)	Snerman	woore	Swisher	Average
Planted Seeds/Acre	35,000	45,000	66,000	66,000	55,000	54,000	50,000	53,000
			plants	/acre as a %	of planted	seed		
CP3475 B2XFŧ								
DG3385 B2XFt			0.51	0.62	0.73			0.62
DP1522 B2XFł						0.29		0.29
DP1822 XF	0.51					0.32		0.41
DP1820 B3XF		0.80	0.39	0.48	0.66		0.76	0.62
DP1908 B3XF		0.77	0.61	0.58	0.66		0.77	0.68
DP1909 XF	0.48					0.22		0.35
FM1320 GL	0.57				0.77	0.24	0.78	0.59
FM1621 GL	0.52				0.73	0.20	0.69	0.53
FM1888 GL	0.67				0.79	0.40	0.81	0.67
FM2398 GLTP	0.54				0.69	0.24	0.79	0.56
NG2982 B3XF	0.67	0.86	0.59	0.61	0.86	0.41	0.82	0.69
NG3406 B2XF I	0.54							0.54
NG3640 XF	0.50	0.76			0.74	0.26	0.73	0.60
NG3930 B3XF	0.61	0.78	0.53	0.44	0.70	0.44	0.73	0.60
NG3956 B3XF	0.54	0.69	0.52	0.60	0.63	0.30	0.74	0.58
Phy250 W3FEł							0.77	0.77
Phy350 W3FEł							0.84	0.84
Trial Average	0.56	0.78	0.52	0.56	0.72	0.30	0.77	0.60

Table 4. Four-week post planting stand counts as a fraction of the planted population.

Table 5. 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots in Dallam County; Jay Willard Cooperator. Reported by maximum lint yield. Values significant at p<0.05.

	Seed Cotton		Lint	Seed		Fiber					Lint loan	Lint	Seed
	Yield	Turnout	Yield	Yield	Micro-	Length	Unif.	Strength			Value	Value	Value
Variety	Ib/acre	%	Ib/acre	Ib/acre	naire	(in.)	%	(g/tex)	CGRD	Leaf	cents/lb	\$/acre	\$/acre
NG2982B3XF	3860 a	0.27	1036	1788	2.9	1.15	82.5	35.0	41	2	48.83	505.83	122.71
NG3930B3XF	3424 ab	0.29	984	1604	2.7	1.17	81.6	31.2	41	2	45.33	447.29	116.63
DP1908B3XF	3508 c	0.28	964	1672	2.9	1.23	82.6	33.7	41	3	46.65	449.12	114.19
NG3956B3XF	3296 ab	0.29	946	1625	2.8	1.15	81.1	33.1	41	1	47.75	452.85	112.14
DP1820B3XF	2959 bc	0.31	911	1289	3.0	1.23	81.3	33.7	41	1	49.55	452.37	107.92
NG3640XF	2650 b	0.28	743	1240	3.2	1.13	81.6	34.0	41	1	50.95	379.16	88.03
Test Average	3283	0.28	931	1536	2.9	1.2	81.8	33.5	41	1.8	48.18	447.77	110.27
CV, %	6.2	3.9	7.3	5.8	9.2	1.9	1.0	2.5	5.9	38.7	6.9	11.7	7.3
p-value	0.0002	0.0166	0.0035	<0.0001	0.3915	0.0003	0.1653	0.0034	NS	0.0082	0.4102	0.1930	<0.0001
LSD	360	0.02	121	159	NS	0.04	NS	1.5	NS	1.5	NS	NS	14.30

MeaNS within a column with the same letter are not significantly different at the 0.05 probability level.

CV - coefficient of variation.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Lint loan value calculated from the 2019 Upland Cotton Loan Valuation Model from Cotton Incorporated using a \$0.52/pound base.

Seed value calculated using \$185/ton.

Table 6. 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots on the Hansford-Sherman County line; Greg Slough Cooperator. Reported by maximum lint yield. Values significant at p<0.05.

	Seed Cotton		Lint	Seed		Fiber					Lint loan	Lint	Seed
	Yield	Turnout	Yield	Yield	Micro-	Length	Unif.	Strength			Value	Value	Value
Variety	Ib/acre	%	Ib/acre	Ib/acre	naire	(in.)	%	(g/tex)	CGRD	Leaf	cents/lb	\$/acre	\$/acre
FM1621 GL	2343 a	0.43	1000	1065	4.8	1.02	79.6	28.1	32	3	47.65	477.71	103.98
DG3385 B2XF*	2724 a	0.35	964	1131	4.5	1.06	81.6	28.8	31	2	48.78	469.87	113.07
NG3956 B3XF	2842 a	0.33	948	1279	4.6	1.06	81.1	29.8	26	1	49.05	465.17	116.65
FM2398 GLTP	2417 a	0.39	941	1005	4.9	1.08	80.7	29.4	23	1	50.07	471.44	107.21
NG2982 B3XF	2730 a	0.34	937	1178	4.4	1.06	81.3	30.4	39	4	49.98	471.02	100.49
NG3930 B3XF	2697 a	0.34	922	1167	4.4	1.10	82.1	29.0	26	2	49.57	457.21	116.27
DP1820 B3XF	2493 a	0.36	907	1005	4.6	1.13	81.1	32.7	26	1	50.57	458.65	113.07
FM1888 GL	2510 a	0.35	882	1072	4.7	1.04	79.1	27.2	25	2	50.08	441.91	106.54
NG3640 XF	2622 a	0.34	881	1163	4.7	1.05	81.6	30.7	30	2	47.78	419.75	117.83
DP1908 B3XF	2459 a	0.33	813	1147	4.5	1.12	81.1	30.1	22	1	54.90	446.28	100.52
FM1320 GL	2336 a	0.34	793	1040	4.7	1.02	79.6	28.9	29	2	49.83	395.35	114.72
Test Average	2561	0.36	908	1114	4.6	1.07	80.81	29.55	28.15	1.92	49.84	452.22	110.03
CV, %	9.4	9.8	10.9	10.3	3.2	1.5	0.9	3.6	6.6	9.1	2.5	3.3	10.3
p-value	0.1548	0.0586	0.4927	0.1587	0.0095	<0.0001	0.0001	0.0002	0.0097	0.0419	<0.0001	0.8400	0.1587
LSD	NS	NS	NS	NS	0.3	0.04	2.3	2.2	9.7	1.9	2.58	NS	NS

MeaNS within a column with the same letter are not significantly different at the 0.05 probability level.

CV - coefficient of variation.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Lint loan value calculated from the 2019 Upland Cotton Loan Valuation Model from Cotton Incorporated using a \$0.52/pound base.

Seed value calculated using \$185/ton.

Table 7. 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots located at the North Plains Groundwater Conservation District's Water Conservation Center where irrigation was initiated at pinhead square; Stan Spain cooperator. Reported by maximum lint yield. Values significant at p<0.05.

	Seed Cotton		Lint	Seed		Fiber					Lint loan	Lint	Seed
	Yield	Turnout	Yield	Yield	Micro-	Length	Unif.	Strength			Value	Value	Value
Variety	Ib/acre	%	Ib/acre	Ib/acre	naire	(in.)	%	(g/tex)	CGRD	Leaf	cents/lb	\$/acre	\$/acre
NG2982 B3XF	4191 a	0.34	1430	1778	4.1	1.14	82.2	33.5	42	6	48.00	687.93	177.78
DG3385 B2XF*	3991 a	0.36	1424	1761	4.0	1.19	83.8	32.1	23	1	51.15	728.35	176.14
DP1908 B3XF	3860 a	0.35	1333	1675	4.4	1.24	84.4	33.5	32	3	54.18	720.90	167.52
NG3930 B3XF	3879 a	0.33	1284	1681	4.0	1.19	84.2	31.3	23	2	51.13	656.47	168.06
DP1820 B3XF	3641 a	0.34	1256	1438	4.1	1.24	83.5	34.6	28	3	50.63	636.04	143.75
NG3956 B3XF	3843 a	0.30	1171	1712	4.0	1.19	82.6	32.5	28	3	50.50	591.12	171.18
Test Average	3901	0.34	1316	1674	4.1	1.19	83.4	32.9	29	3	50.93	670.13	167.41
CV, %	5.3	5.7	6.9	4.7	3.6	3.2	0.9	1.9	23.0	62.8	2.6	7.4	4.7
p-value	0.3076	0.2412	0.1540	0.0396	0.4297	0.0305	0.1249	0.0015	0.1922	0.2450	0.0485	0.1755	0.0396
LSD	NS	NS	NS	193	NS	0.05	NS	1.5	NS	NS	NS	NS	NS

MeaNS within a column with the same letter are not significantly different at the 0.05 probability level.

CV - coefficient of variation.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Lint loan value calculated from the 2019 Upland Cotton Loan Valuation Model from Cotton Incorporated using a \$0.52/pound base.

Seed value calculated using \$185/ton.

Table 8. 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots located at the North Plains Groundwater Conservation District's Water Conservation Center where irrigation was initiated at peak bloom; Stan Spain cooperator. Reported by maximum lint yield. Values significant at p<0.05.

	Seed Cotton		Lint	Seed		Fiber					Lint loan	Lint	Seed
	Yield	Turnout	Yield	Yield	Micro-	Length	Unif.	Strength			Value	Value	Value
Variety	Ib/acre	%	Ib/acre	Ib/acre	naire	(in.)	%	(g/tex)	CGRD	Leaf	cents/lb	\$/acre	\$/acre
DP1908 B3XF	3550 a	0.37	1319	1504	4.6	1.20	82.7	32.1	27	3	54.90	727.25	150.44
DP1820 B3XF	3616 a	0.34	1240	1446	4.2	1.25	83.4	34.7	34	1	49.55	614.68	144.60
DG3385 B2XF*	3408 a	0.35	1192	1485	4.3	1.17	83.8	32.1	33	2	50.30	599.81	148.48
NG3956 B3XF	3550 a	0.31	1115	1590	4.3	1.17	83.1	34.5	28	3	50.53	563.42	159.01
NG3930 B3XF	3323 a	0.32	1077	1441	4.0	1.20	84.0	32.1	23	3	50.80	546.87	144.05
NG2982 B3XF	3235 a	0.31	1007	1385	4.3	1.15	83.6	33.0	42	6	49.53	500.49	138.51
Test Average	3447	0.34	1158	1475	4.3	1.19	83.4	33.1	31	3	50.93	592.09	147.52
CV, %	4.5	8.5	10.1	5.1	2.5	1.5	0.6	2.0	13.9	45.4	4.1	29.1	4.7
p-value	0.2359	0.3580	0.2247	0.2672	0.0195	0.0132	0.2531	0.0162	0.0452	0.0920	0.2408	0.2745	0.0396
LSD	NS	NS	NS	NS	0.3	0.04	NS	1.6	11	NS	NS	NS	10.68

MeaNS within a column with the same letter are not significantly different at the 0.05 probability level.

CV - coefficient of variation.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Lint loan value calculated from the 2019 Upland Cotton Loan Valuation Model from Cotton Incorporated using a \$0.52/pound base.

Seed value calculated using \$185/ton.

The RACE trials at the North Plains Groundwater Conservation District's (NPGCD) Water Conservation Center (WCC) were duplicated to evaluate the timing of irrigation initiation on variety performance. Irrigation timing simulated two common irrigation scenarios: 1) early irrigation initiated at pinhead square simulating where irrigation water is dedicated to a cotton crop, and 2) late irrigation initiated at full bloom simulating where irrigation would be shared with a corn crop. Initiating irrigation at full bloom allows the producer to concentrate irrigation resources on the corn crop during tasseling then move irrigation to the cotton crop. In 2019, all plots received 0.65 inches on June 27 when cotton was approximately 2-4 nodes. The irrigation treatment at pinhead square was initiated on July 9, and the irrigation treatment at peak bloom was initiated on August 6. Seasonal irrigation totals were 8 and 4.7 inches for irrigation the pinhead and peak bloom treatments, respectivitely. Soil moisture was monitored with gypsum blocks. Soil moisture remained greater then 90% of field capacity in June during early vegetative development. Although the trial lint yield average was 158 lbs/acre less when initiating irrigation later in the season at peak bloom, yield data reveals significant variety responses responses by maturity (Fig. 3). First year data suggests that the evaluated early maturing varieties are more susceptible to yield losses from water stress at early season reproductive

stages than the evaluated early-med varieties. Because earlier varieties are often more determinant, they may not have the ability to flex with favorable growing conditions later in the growing season like the early-med maturity varieites. Micronaire values were greater for all varieties except NG3930 B3XF when irrigation was initiated at peak bloom due to a concentration of resources with the reduced boll load; however, micronaire values were still within premium quality standards.

Figure 3. Comparison of lint yield between irrigation initiated two different development periods (pinhead square (PHS) and peak bloom) in the Texas A&M AgriLife RACE trials at the North Plains Ground Water Conservation District's Water Conservation Center.

Table 9. 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots in Parmer County; Tony Beauchamp cooperator. Reported by maximum lint yield. Values significant at p<0.05.

	Seed Cotton		Lint	Seed		Fiber					Lint loan	Lint	Seed
	Yield	Turnout	Yield	Yield	Micro-	Length	Unif.	Strength			Value	Value	Value
Variety	Ib/acre	%	Ib/acre	Ib/acre	naire	(in.)	%	(g/tex)	CGRD	Leaf	cents/lb	\$/acre	\$/acre
NG3956 B3XF	4145 a	0.32	1313	1909	4.8	1.17	83.0	32.2	35	4	51.80	679.83	190.91
CP3475 B2XF*	4175 a	0.31	1310	1876	4.7	1.17	82.8	32.7	32	4	52.30	684.91	187.57
DP1820 B3XF	4055 a	0.31	1279	1719	4.8	1.23	82.5	34.7	32	3	54.47	696.44	171.93
DP1908 B3XF	4199 a	0.30	1255	1913	4.8	1.19	82.0	32.4	31	4	54.42	680.05	191.26
NG3406 B2XF	3993 a	0.31	1251	1786	4.8	1.16	82.5	32.5	32	3	52.97	662.53	178.63
NG2982 B3XF	3827 a	0.32	1209	1734	4.8	1.19	82.6	32.5	32	3	54.75	659.39	173.42
NG3640 XF	3929 a	0.29	1141	1728	4.8	1.17	82.7	35.2	32	3	52.37	598.91	172.77
Test Average	4046	0.31	1251	1809	4.79	1.18	82.6	33.2	32	3	53.30	666.01	180.93
CV, %	12.4	5.2	15.9	5.6	2.3	2.6	10.9	3.9	6.4	8.7	8.6	4.5	5.6
p-value	0.5621	0.2943	0.6508	0.5888	0.7850	0.1156	0.7712	0.0781	0.6612	0.4581	0.6127	0.5708	0.5880
LSD	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS

MeaNS within a column with the same letter are not significantly different at the 0.05 probability level.

CV - coefficient of variation.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Lint loan value calculated from the 2019 Upland Cotton Loan Valuation Model from Cotton Incorporated using a \$0.52/pound base.

Seed value calculated using \$185/ton.

Table 10. 2019 Lint yield, quality, and value results from the Texas A&M AgriLife RACE Plots in Swisher County; Jeremy Reed cooperator. Swisher County trial planted on 40-inch rows. Reported by maximum lint yield. Values significant at p<0.05.

	Seed Cotton		Lint	Seed		Fiber					Lint loan	Lint	Seed
	Yield	Turnout	Yield	Yield	Micro-	Length	Unif.	Strength			Value	Value	Value
Variety	Ib/acre	%	Ib/acre	Ib/acre	naire	(in.)	%	(g/tex)	CGRD	Leaf	cents/lb	\$/acre	\$/acre
FM1621 GL	3223 a	0.34	1082	1206	5.1	1.06	80.9	31.2	38	4	50.38	545.46	128.21
Phy350 W3FE	3476 a	0.30	1051	1400	4.9	1.10	81.9	30.5	25	2	51.60	542.48	124.48
DP1820B3XF	3201 ab	0.32	1026	1213	4.9	1.12	81.0	31.9	22	1	55.22	565.67	121.55
FM1888GL	3090 ab	0.31	962	1216	5.0	1.08	81.5	30.3	31	3	52.82	508.10	114.01
FM2398GLTP	2678 b	0.35	940	1026	5.4	1.09	82.1	30.3	21	2	49.88	469.10	111.40
NG3930B3XF	2934 ab	0.32	937	1242	4.6	1.11	83.1	30.4	25	3	53.90	505.14	111.08
FM1320GL	3004 ab	0.31	921	1230	5.0	1.05	80.7	30.0	28	2	51.78	477.00	109.08
NG3956B3XF	2982 ab	0.30	908	1278	4.9	1.08	81.4	29.2	29	3	50.87	462.14	107.57
NG3640XF	2894 ab	0.30	873	1203	5.2	1.05	81.6	33.2	29	2	49.27	431.65	103.47
NG2982B3XF	3148 ab	0.28	871	1240	4.5	1.06	81.4	31.9	48	6	46.67	407.32	103.17
DP1908B3XF	2874 ab	0.30	851	1213	4.6	1.15	81.9	32.0	28	3	56.28	478.84	100.83
Phy250W3FE	2798 ab	0.31	787	1014	4.9	1.10	81.4	30.1	31	3	53.20	419.44	93.29
Test Average	3025	0.31	934	1207	4.9	1.09	81.6	30.9	30	3	51.82	484.36	110.68
CV, %	10.6	2.7	9.4	9.0	3.8	1.7	0.9	2.7	5.6	2.1	2.5	10.4	9.9
p-value	0.0420	< 0.0001	0.0136	0.0454	0.0002	< 0.0001	0.0353	0.0003	< 0.0001	0.0004	<0.0001	0.0151	0.0284
LSD	540	0.04	147	211	0.3	0.04	1.5	1.7	9.5	1.9	2.70	74.06	6.70

MeaNS within a column with the same letter are not significantly different at the 0.05 probability level.

CV - coefficient of variation.

Value for lint based on CCC loan value from grab samples and FBRI HVI results.

Lint loan value calculated from the 2019 Upland Cotton Loan Valuation Model from Cotton Incorporated using a \$0.52/pound base.

Seed value calculated using \$185/ton.

Bloom Tagging

Jourdan Bell and Mike Bragg

In response to producer questions about bloom drop and the percent of blooms being retained as harvestable bolls, Bell and Bragg tagged first day/white blooms in NG2982 B3XF at the Dallam and Moore-NPGCD WCC locations. At the WCC, bloom tagging occurred in the early irrigation treatment (irrigation initiated at PHS). The Dallam county location was a deficit irrigated location where 3.5" of irrigation was applied throughout the growing season. At both locations, blooms and candles were tagged every two days from August 8 through August 20 with candles representing the next days bloom. August 20 was chosen as the last tagging date as this date is commonly believed to be the last effective bloom date for the Texas Panhandle cotton production region. By mid-August, bloom shed at both locations exceeded 60%. At the Dallam County trial, it is likely mid-August fluctuations were in response to mid-August precipitation events, but a similar recovery was not observed at the NPGCD WCC even though precipitation and temperatures were similar during this period. Insect pressure and/or injury that would enhance bloom drop was not observed at either location. Overall, there was a steady decline in boll retention over the 13 day evaluation period. It was observed that primary bloom loss was from second and third positions. Bloom tagging evaluations will be continued in 2020 (with tagging being initiated earler) to capture variations in bloom retention in response to environmental conditions.

Figure 4. Bloom retention in NG2982 B3XF at Texas A&M AgriLife RACE trials located at Dallam County and NPGCD WCC.

Figure 5. Daily maximum and minimum temperatures and precipitation at Texas A&M AgriLife RACE trials located at Dallam County and NPGCD WCC in August 2019 during the bloom evaluation period.

Texas A&M AgriLife collaborated with North Plains Groundwater Conservation District to provide weekly video updates rotating between RACE trials within District boundaries. The weekly video series, Cotton and Conservation, provided NPGCD cotton producers real-time agronomic updates under the respective environmental and management systems. Videos are available at: http://northplainsgcd.org/conservationprograms/agricultural-conservation/cotton/

Acknowledgements

We wish to express our appreciation to the cooperators for making the RACE trials possible. They generously provide use of land, assistance and equipment for planting and harvesting. We thank Dr. Jane Dever and Ms. Valerie Morgan (Texas A&M AgriLife Research) for the use of the ginning facilities and the Texas Tech University Fiber and Biopolymer Research Institute for HVI fiber quality analyses. We sincerely thank seed companies (Americot, Bayer, and BASF) for entering top cotton varieties positioned for the Texas Panhandle. We appreciate Plains Cotton Grower's Plains Cotton Improvement Programs for supporting Texas Panhandle cotton activities. We appreciate the assistance of Texas A&M AgriLife student employees; Layney Miller, Shelby Lain and Mattie Brooks.

http://cotton.tamu.edu